How did they compute this e equation?

  • Thread starter Thread starter myusernameis
  • Start date Start date
myusernameis
Messages
56
Reaction score
0

Homework Statement


this is a question I'm working on, and there's this step I'm stuck on
it looks like this:

Homework Equations


eq0041LP.gif



The Attempt at a Solution


how come the 9.8 became the 50?

thanks
 
Physics news on Phys.org
\int e^{ax}dx= \frac{1}{a}e^{ax}+C
 
rock.freak667 said:
\int e^{ax}dx= \frac{1}{a}e^{ax}+C

ohhHHHH ... it seems all simple now

thanks!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top