How Do Engineers Design AntiNoise to Effectively Reduce Ambient Noise?

AI Thread Summary
Engineers design anti-noise systems for noise cancellation by using both passive and active methods to reduce ambient noise levels. The discussion focuses on calculating the appropriate anti-noise signal, specifically how to achieve a combined amplitude of 20 when added to ambient noise of 100 sin(ω t). It highlights the challenge of achieving perfect phase opposition, as the anti-noise signal cannot be negative. The conversation also touches on the mathematical relationship between the amplitudes and phases of the signals involved, emphasizing the importance of understanding sine wave properties. Ultimately, the goal is to minimize energy consumption while effectively reducing ambient noise.
Decentralized
Messages
2
Reaction score
0
Summary:: AmbientNoise + AntiNoise combined calculation

I am having trouble with this question:
Noise cancelling headphones use both passive (insulated earphones) and active (electronic “anti-noise”) methods to nullify ambient noise. One task of a sound engineer is to design low-energy anti-noise signals that help cancel ambient noise. Consider anti-noise that is to be combined (to cancel) ambient-noise.

AmbientNoise = 100 sin(ω t) Amplitude 100 and frequency ω .
AntiNoise = A sin(ω t + φ) Amplitude A is a positive number. −π < φ ≤ π

1. Choose AntiNoise so the sum AmbientNoise + AntiNoise has a combined amplitude of 20 (much quieter than AmbientNoise). Guess/choose the phase φ that minimizes A (minimum A decreases hearing fatigue and energy consumption).

AmbientNoise = 100 sin(ω t)
AntiNoise = A sin(ω t + φ)
A = ____ φ = _____rad
CombinedSound = ____sin( ____ )

2. It is difficult for AntiNoise to be perfectly out of phase with AmbientNoise (i.e., difficult for φ to be exactly π). Consider AntiNoise = 100 sin(ω t + π + δ). Determine the maximum δ between 0 and π to create a combined noise/anti-noise sound of amplitude 20, i.e.,
CombinedSound = 100 sin(ω t) + 100 sin(ω t + π + δ) = 20 sin(ω t + SomePhase)
Show δ is governed by the following equation – and solve for δ.

sqr(2 − 2 cos(δ))= 0.2
δ ≈ 0.2 rad ≈ 11.5◦

For the first question, if I want to cancell ambient noise with anti noise down to 20, I am assuming it is going to be -80 sin(ω t)?
But A cannot be a negative number. I am not sure how to approach this problem. We've only learned Asin(x) + Bsin(x) = C sin(x+φ) where C = sqr( A^2 + B^2).

Appreciate your input here.
 
Physics news on Phys.org
Decentralized said:
For the first question, if I want to cancell ambient noise with anti noise down to 20, I am assuming it is going to be -80 sin(ω t)?
But A cannot be a negative number. I am not sure how to approach this problem.
Welcome to PF. :smile:

What is the value of ##sin(\omega + \pi)## compared to ##sin(\omega)## ?
 
berkeman said:
Welcome to PF. :smile:

What is the value of ##sin(\omega + \pi)## compared to ##sin(\omega)## ?
Oh, It's going to be ##sin(\omega + \pi)## = ##-sin(\omega)##
Should I make it ##sin(\omega t + \pi \omega)## = ##-sin(\omega t)## so that φ = ω π, A = 80?

But if that's the case, φ depends on ω, and in the second question it gives out:
CombinedSound = 100 sin(ω t) + 100 sin(ω t + π + δ) = 20 sin(ω t + SomePhase),
in which A = 100, φ = π+ δ. It is kind of contradict with what I just got. Am I on the right direction so far?

Appreciate your reply!
 
1630261771030.png

Correct.

1630261798625.png

No, just ##sin(\omega t + \pi) = -sin(\omega t)##
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top