vanhees71 said:
1. You're mixing again up things.
There are two issues. First there's entanglement. That's common to all kinds of QT, relativistic and non-relativistic.
Relativistic QFT is simply a more comprehensive theory compared to non-relativistic QM, in the same sense as relativistic classical mechanics and field theory is more comprehensive than Newtonian classical mechanics. The reason why relativistic QT is formulated as a relativistic QFT is that it admits the ubiquitous case of particle-number changing processes when reactions exchange energies comparable or exceeding the masses of particles that can be produced in this reactions (according to the known conservation laws).
In non-relativistic QT for systems of fixed particle numbers QFT is still convenient for many-body systems of indistinguishable particles, because it takes care of the necessary symmetrization and antisymmetrization operations on many-body states due to Bose-Einstein or Fermi-Dirac statistics, respectively. Otherwise in this case 1st-quantized and 2nd-quantized (i.e., QFT) formulation of non-relativistic QM are completely equivalent.
Now we often discuss photons in the context of experiments with entangled states, simply because it's so easy to prepare entangled two- (or even many-)photon Fock space, particularly Bell states, with which Bell tests can be performed. Photons cannot be described in some non-relativistic approximation, and that's why all quantum optics is in fact an application of quantum electrodynamics (QED), i.e., a relativistic QFT. Of course some issues like the interaction of the em. field with lab equipment, including photodetectors, can be treated in the approximation, where the corresponding condensed matter (dielectrics, metals, semiconductors, or whatever equipment you have in an experiment) is described by non-relativistic many-body theory, and that usually simplifies the task. E.g., photodetection is often based on the photoelectric effect and since it's way easier to describe bound-state problems (like electrons in a semiconductor or a metal in this case of the photoeffect) such approximations are used, and they are well justified, because here the non-relativistic approximation for local (!) interaction processes is valid.
Then usually debates about instantaneous interactions, violating Einstein causalities, arise, which is natural in the context of entangled states with local experiments done at space-like separated space-time regions.
Of course, in the context of non-relativistic physics, and non-relativistic QM is no exception, you cannot expect the Einstein causality to hold. It doesn't hold in classical non-relativistic physics either, but you have absolute time and absolute space as postulated by Newton in the very dawn of modern physics. Thus there's no tension between instantaneous interactions and the causality structure of Newtonian spacetime and that's why you don't need to worry about it within a non-relativistic theory.
2. Now we know that nature is relativistic, and that's why it were a contradiction if there were instantaneous interactions and thus faster-than-light signal propagation possible. To discuss whether QT obeys the causality constraints of relativity, you have to investigate the relativistic QT, and that's formulated in terms of relativistic QFT, and as discussed for a zillion of times, relativistic QFT by construction cannot violate Einstein causality, and it doesn't violate Einstein causality. It is also consistent with the finding that the strong correlations of far distant parts of quantum systems as described by entanglement. If this were not the case QED would have been ruled out for about 30 years when the first Bell tests have been successfully performed with the finding that QT (and also QED) make the correct predictions with an astonishing precision and significance, while the prediction of the Bell inequality valid for local deterministic hidden-variable theories fails at the same level of accuracy and significance.
That's why we discuss physical systems which are utmost relativistic (photons) and fundamental questions about Einstein causality (which is specifically relativistic too and cannot be tested within non-relativistic approximations).
Thanks for this, very helpful at a number of levels. Some I knew, some I did not. A couple of comments related to your sentences in bold.
1. I am specifically trying to understand how and why you are so focused on QFT as it relates to entanglement, when I don't think it is that critical (if relevant at all). Sure, a better theory is a better theory, and certainly advances are desired. But let's face it: entanglement scenarios (Bell tests for example) do not depend on time ordering or distance, so I don't see why a relativistic theory would be called for unless some additional benefit were derived. That doesn't seem to be the case, ergo my question.
Coming from a different angle: I would assume that a relativistic constraint added to QM would have difficulty explaining how signal locality is achieved, all the while allowing entangled quantum systems to exhibit quantum nonlocality. That seems to be an obvious problem with a theory purporting to respect c from its construction. You have made the case that QFT is consistent and does not have that problem, but I still wonder. I would guess the nonlocality of entanglement is not resolved in QFT; because I have said many times, we wouldn't need interpretations if it were. That would be big news indeed. So yes, I'd like to know if and how QFT explains the mechanism of entanglement better than QM.
(So I don't think I am mixing anything up.)2. And I think this is a significant point of departure between you and I. You are saying there isn't anything occurring FTL in entanglement experiments, because if it did, it would violate relativity - and more specifically relativistic QFT. While I see most entanglement experiments as a demonstration of quantum nonlocality.
I essentially deny that any classically local theory can explain this behavior, while you deny that the quantum nonlocal behavior occurs in the first place. Let me know if I am not representing your position fairly.
Next question: Can you explain how perfect correlations occur in entanglement? (For sake of simplicity, can we assume that T1 < T2 < T3 in all reference frames? Let me know if this is not possible.)
a. We have spin entangled A and B, now distant from each other, at T1.
b. I presume you agree that at T1, neither has a well-defined spin.
c. Alice measures A at angle ##\theta## at time T2, giving A a well-defined spin.
d. Bob measures B at angle ##\theta## at time T3, giving B a well-defined spin if it didn't already have one as a result of c. Further, T3 is sufficiently near to time T2 that there is insufficient time for any classical signal to go from A to B.
e. How do Alice and Bob always have anti-correlated results, regardless of choice of ##\theta##? One would assume that A and B need some kind of FTL signal, action, mutual rapport or something to accomplish this impressive feat. We know from Bell that it is not due to hidden variables.
Thanks, and this question is not intended to be confrontational. I'd really like to get a better understanding of what QFT says about this, and especially how it differs from QM (as you have said it matters).