How Do Fourier Integral Operators Work in Mathematical Analysis?

super_al57
Messages
3
Reaction score
0
Hi everybody! I'm studying the Fourier integral operators but I can't resolve a pass. I'm considering the following operator:
$$Au(x)=\frac{1}{{(2\pi h)}^{n'}}\int_{\mathbb{R}_y^m\times\mathbb{R}_\theta^{n'}} e^{i\Psi(x,y,\theta)/h}a(x,y,\theta,h)u(y)\, dy\, d\theta$$ where $$Au\in C^0 (\mathbb{R}^m)$$. I know that $$Au\in C^0 (\mathbb{R}^m)$$ is well defined as oscillating integral if I use the pseudodifferential operator $$L=\frac{1}{1+\mid\nabla_{y,\theta}\Psi\mid^2}(1+h\nabla_y\bar{\Psi}D_y+h\nabla_{\theta}\bar{\Psi}D_{\theta})$$. I have to demonstrate, using integration by parts, that $$L=\mathcal{O}(<\theta>^{-k})$$.
Could anyone help me? Thanks
 
Physics news on Phys.org
Thanks for the post! Sorry you aren't generating responses at the moment. Do you have any further information, come to any new conclusions or is it possible to reword the post?
 
Greg Bernhardt said:
Thanks for the post! Sorry you aren't generating responses at the moment. Do you have any further information, come to any new conclusions or is it possible to reword the post?
:L I have no idea about how to begin. And I have no further information.
 
Back
Top