MHB How Do GCDs Coincide in Principal Ideals According to Rotman's Proposition 3.41?

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Domain
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Joseph J.Rotman's book, A First Course in Abstract Algebra.

I am currently focused on Section 3. Polynomials

I need help with the a statement of Rotman's concerning the definition of a gcd in a general domain ... the definition

The relevant section of Rotman's text reads as follows:View attachment 4544
View attachment 4545
In the above text we read the following:

" ... ... By Proposition 3.41, the principal ideals generated by two gcd's $$d$$ and $$d'$$ of $$a$$ and $$b$$ coincide: $$(d') = (d)$$. ... ..."Can someone please help me to prove (rigorously and formally) that this statement actually follows from Proposition 3.41?

Hope someone can help ...

Peter
*** NOTE ***

Proposition 3.41 reads as follows:https://www.physicsforums.com/attachments/4546
 
Physics news on Phys.org
Peter said:
I am reading Joseph J.Rotman's book, A First Course in Abstract Algebra.

I am currently focused on Section 3. Polynomials

I need help with the a statement of Rotman's concerning the definition of a gcd in a general domain ... the definition

The relevant section of Rotman's text reads as follows:

In the above text we read the following:

" ... ... By Proposition 3.41, the principal ideals generated by two gcd's $$d$$ and $$d'$$ of $$a$$ and $$b$$ coincide: $$(d') = (d)$$. ... ..."Can someone please help me to prove (rigorously and formally) that this statement actually follows from Proposition 3.41?

Hope someone can help ...

Peter
*** NOTE ***

Proposition 3.41 reads as follows:

I don't see how Prop. 3.41 applies. It's pretty straightforward anyway. If $d$ and $d'$ are gcds of $a$ and $b$, then $d|d'$ and $d'|d$. Thus $(d)\subseteq (d')$ and $(d')\subseteq (d)$.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top