How Do I Calculate Probability Amplitudes for a Perturbed Quantum State?

  • Thread starter Thread starter Jumbuck
  • Start date Start date
  • Tags Tags
    Qm State Vectors
Jumbuck
Messages
2
Reaction score
0
For my homework, I have a problem in which a (harmonic oscillator) system is prepared in state n=2 for t<0.

For time t>0, there is a perturbation given by

V(t) = sqrt(3/4)*h_bar*omega* (|2><1| + |1><2|)

After this I need to compute the probability amplitudes. However, my background is in engineering, so I'm unsure how to work with these outer products of two state vectors, or even how this mixing works. If anyone has any hints or links on how to work with these, I would appreciate it very much.

Also, for future reference, do these forums automatically generate LaTeX, or do you import the LaTeX equations I've seen in other posts?
 
Physics news on Phys.org
In these forums, you can get the $ ... $ environment by using the [ itex ] ... [ /itex] tags. And you can get the \[ ... \] environment with the [ tex ] ... [ /tex ] tags. (Remove the spaces to use those tags) (note the direction of the slash)
 
As to doing the algebra, just manipulate it formally. If you were faced with the product of |1><2| with |2>, that's given by |1><2|2> = |1>. Just remember that the distributive rules work (i.e. (A+B)C = AC + BC), but the commutative rule only works for scalars (i.e. for most S and T: ST \neq TS, but rS = Sr)
 
Hurkyl said:
As to doing the algebra, just manipulate it formally. If you were faced with the product of |1><2| with |2>, that's given by |1><2|2> = |1>. Just remember that the distributive rules work (i.e. (A+B)C = AC + BC), but the commutative rule only works for scalars (i.e. for most S and T: ST \neq TS, but rS = Sr)

Thanks!

Since these are state vectors, would

(|2><1| + |1><2|) * |2>) = |2><1|2> + |1><2|2> = |1> ?

I believe these state vectors are orthogonal, so the <1|2> term is 0, but my textbooks isn't very clear.
 
Here's a useful little calculation: suppose that v and w are eigenstates of a hermetian operator T, with different associated eigenvalues. Then, compute:

\langle v | T | w \rangle

and

\langle w | T | v \rangle

Since these two expressions are complex conjugates of each other, it tells you something about \langle v | w \rangle = \langle w | v \rangle^*.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top