How do I determine if a certain nuclear decay is allowed?

Calleguld
Messages
3
Reaction score
0
Hi, I am struggling with a question where they want me to determine whether or not three different decay are allowed.

From what I have understood all decays must follow a set of conservation law. These laws are:
1 Conservation of Baryon number
2 Conservation of Lepton number
3 Conservation of electric charge

This is very straight forward when you have simple decays like the decay of a neutron. Where you have:

n -> p+e+anti ve

But how does it work for nucleons?

For example:

Thorium-222 -> Oxygen-16 + Lead-206

This decay is not allowed as thorium-222 only decays with alpha-decay. But as far as I can see the laws are still followed.

1: 222 -> 16 + 206 = 222
2: 90 -> 8 + 82 = 90
3: 90-90 -> 8-8 + 82-82 = 0

What am I missing? please help!
 
Physics news on Phys.org
There's another requirement.
4. Mass+energy must be conserved.

Does Oxygen-16 + Lead-206 have more mass than Thorium-222? If so, then the decay is not allowed.
 
DuckAmuck said:
There's another requirement.
4. Mass+energy must be conserved.

Does Oxygen-16 + Lead-206 have more mass than Thorium-222? If so, then the decay is not allowed.

I forgot to add that law.

The mass difference is: 222.018468u - (205.974465u + 15.994914u) = 0.0491u

Which would suggest that this decay is allowed.

Thanks for the answer though!
 
Are you taking into account the difference in mass between neutrons and protons? Recall that neutrons are a bit heavier than protons.
 
DuckAmuck said:
Are you taking into account the difference in mass between neutrons and protons? Recall that neutrons are a bit heavier than protons.

Yes that difference is accounted for. I got the masses from this site/paper https://www-nds.iaea.org/amdc/ame2012/mass.mas12
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top