How do I evaluate <x> with the k-space representation?

Cracker Jack
Messages
6
Reaction score
0

Homework Statement


Given the following k-space representation of the wave function:
Ψ(k,t) = Ψ(k)e-iħk2t/2m

use the wave number representation to show the following:

<x>t=<x>0 + <p>0t/m

<p>t=<p>0

Homework Equations


<x>=∫Ψ*(x,t)xΨ(x,t)dx
<p>=∫Ψ*(x,t)(-iħ ∂/∂x)Ψ(x,t)dx

The Attempt at a Solution


I have tried to make the k-space representation into the normal Ψ(x,t) representation then taking Ψ*(x,t) and taking that integral where Ψ(x,t)=1/√(2pi)∫Ψ(k)e-iħk2t/2m*ei(kx-ħk2t/2m)dkHowever, I get caught up when calculating <x> at the following integral: <x>=1/2pi*∫∫(Ψ*(k)Ψ(k) x dk)dx
 
Physics news on Phys.org
Cracker Jack said:
Ψ(x,t)=1/√(2pi)∫Ψ(k)e-iħk2t/2m*ei(kx-ħk2t/2m)dk
You don't need to do that calculation because you are asked to compute the integral in the k space, and you have also been given the state in k space.
Cracker Jack said:
<x>=1/2pi*∫∫(Ψ*(k)Ψ(k) x dk)dx
Your equation is not correct. Even if you want to do the integral in x space by first expressing ##\psi(x,t)## in its Fourier integral, there should be three integral signs appearing there. But again you don't need to do this. Simply calculate
$$
\int_{-\infty}^{\infty} \psi^*(k,t)x\psi(x,t) \hspace{2mm}dk
$$
Your first task is to find out how the operator ##x## acts in k space.
Hint: the expression of ##x## in k space is similar to that of ##p## in position space.
 
blue_leaf77 said:
You don't need to do that calculation because you are asked to compute the integral in the k space, and you have also been given the state in k space.

Your equation is not correct. Even if you want to do the integral in x space by first expressing ##\psi(x,t)## in its Fourier integral, there should be three integral signs appearing there. But again you don't need to do this. Simply calculate
$$
\int_{-\infty}^{\infty} \psi^*(k,t)x\psi(x,t) \hspace{2mm}dk
$$
Your first task is to find out how the operator ##x## acts in k space.
Hint: the expression of ##x## in k space is similar to that of ##p## in position space.
Thank you, I think this helps. I was thinking x could only act on Ψ if it was Ψ(x,t). Looking through lecture notes, I think that x operates in k space as i∂/∂k. Is that correct?
 
Cracker Jack said:
I think that x operates in k space as i∂/∂k. Is that correct?
Yes correct.
Cracker Jack said:
I was thinking x could only act on Ψ if it was Ψ(x,t).
States are vector in vector space and the operators are the linear maps in the vector space. Since vector space can have more than one bases, the operators can also have different form depending on which bases being used. When position bases is being used ##x## becomes simply a number, in k space ##x## acts such that it has the form you wrote there.
 
blue_leaf77 said:
Yes correct.

States are vector in vector space and the operators are the linear maps in the vector space. Since vector space can have more than one bases, the operators can also have different form depending on which bases being used. When position bases is being used ##x## becomes simply a number, in k space ##x## acts such that it has the form you wrote there.
Thank you this helped a lot, and now I think I've gotten the right answer.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top