How do I find the integrating factor for solving this differential equation?

TG3
Messages
66
Reaction score
0

Homework Statement



Find the general solution for y' +3y = t + e^(-2t) for y.

The Attempt at a Solution



At first I thought that since the equation was already separated, I could simply integrate both sides and get a solution easily:

That results in 1.5 y^2 + y = .5t^2 - .5e^(-2t)
(Unless I made a simple error, which is quite possible.)

However, I quickly realized that this is not the approach to take, since it still contains multiple powers of y.

So, I suspect that I will need to find an integrating factor to multiply by, (commonly called mu, I believe) but I'm not sure how you're supposed to find that.
 
Physics news on Phys.org
For an equation

\frac{dy}{dt}+P(t)y=Q(t)


an integrating factor u is given by u=e∫P(t) dt
 
TG3 said:

Homework Statement



Find the general solution for y' +3y = t + e^(-2t) for y.

The Attempt at a Solution


At first I thought that since the equation was already separated, I could simply integrate both sides and get a solution easily:
It might look separated to the most casual observer, but it's not, and further, it's not separable. You have
dy/dt + 3y = t + e-3t

As it sits, there's no way to get all of the terms involving y and dy on one side, and the other terms involving t and dt on the other side. An integrating factor, as rock.freak667 suggested, is the way to go.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top