How do I find the inverse of a log function?

hancyu
Messages
57
Reaction score
0

Homework Statement



f(x) = log2 x + 3
2 log2 x − 1
how do i find the inverse of this? how do i find the range and domain of a log function?

Homework Equations

f(x) = log2 x + 3
2 log2 x − 1

is equal to
f(x) = log2 x + 3 - log2 (x − 1)2

D of f(x) = R of f-1(x)

The Attempt at a Solution



i tried changing the base but it didnt work...
 
Last edited:
Physics news on Phys.org
also, is the inverse of

f(x) = 2x−1 + 3

log2 (x/3) +1 = y


f(x) = log2/3(x − 2) − 4

(2/3)x+4 + 2 = y

are these correct?
 
Ok. Your attempt was sadly, incorrect, although similar to something you were probably thinking of:

\log_c ( \frac{a}{b} ) = \log_c a - \log_c b,

which is not the same as what you tried: \frac{ \log_c a}{\log_c b} = \log_c a - \log_c b, which is not true.

It might help if you let u= log_2 x so that you may view the problem easier. Doing so, solve the equation you have for you, replace the expression in x back in and solve it for x. Then swap your x and f(x), that's your inverse function!

For your second problem, not quite. Solve it for x first. So First take 3 to the other side,

2^{x-1} = f(x) - 3. After that, take log_2 of both sides, hopefully you can see the rest. Then just swap x for f(x).

The last one looks correct, good work =]
 
Presumably you know that the domain and range of any function of the form loga(x) is {x|x> 0} and all real numbers respectively.

You also should know that the domain of a rational function is all numbers such that the denominator is not zero.

Putting those together, the domain of loga(f(x))/loga(g(x)) is all x such that x is positive and g(x) is not 1 (so that log(g(x)) is not 0).
 
HallsofIvy said:
Presumably you know that the domain and range of any function of the form loga(x) is {x|x> 0} and all real numbers respectively.

You also should know that the domain of a rational function is all numbers such that the denominator is not zero.

Putting those together, the domain of loga(f(x))/loga(g(x)) is all x such that x is positive and g(x) is not 1 (so that log(g(x)) is not 0).

so the domain of the 1st one is x=>0 ? because log can never be zero or negative?

i still can't get the inverse tho...
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top