How do I Find the Right Delta for an Epsilon-Delta Proof?

  • Thread starter Thread starter nietzsche
  • Start date Start date
  • Tags Tags
    Proof
nietzsche
Messages
185
Reaction score
0

Homework Statement



Prove that

<br /> \lim_{x \to 3} \frac{1}{x-4} = -1<br />

Homework Equations





The Attempt at a Solution



Given \varepsilon &gt; 0, we want to find \delta such that

<br /> \begin{align*}<br /> 0&lt;|x-3|&lt;\delta \Rightarrow |\frac{1}{x-4}+1| &lt; \varepsilon<br /> \end{align*}<br /> \begin{align*}<br /> |\frac{1}{x-4}+1| &amp;&lt; \varepsilon\\<br /> |\frac{x-3}{x-4}| &amp;&lt; \varepsilon<br /> \end{align*}<br />

I always get stuck at this part! I'm never sure of how to proceed. Should I restrict the interval?
 
Physics news on Phys.org
You could could restrict |x - 3| to be less than .5, which means that 2.5 < x < 3.5, and -1.5 < x - 4 < -.5, so .5 < |x - 4| < 1.5.
 
so once we get to here, using \delta_1 = \frac{1}{2},

<br /> \begin{align*}<br /> \frac{1}{2} &lt; |x-4| &lt; \frac{3}{2}\\<br /> 2 &gt; |\frac{1}{x-4}| &gt; \frac{2}{3}<br /> \end{align*}<br />

and then plugging it into the epsilon formula

<br /> \begin{align*}<br /> |\frac{x-3}{x-4}| &lt; \varepsilon\\<br /> 2|x-3| &lt; \varepsilon\\<br /> |x-3| &lt; \frac{\varepsilon}{2}<br /> \end{align*}<br />

so we take

\delta = \text{min} (\frac{1}{2}, \frac{\varepsilon}{2})

does it seem okay?
 
sorry, i never got a response on this one, and I'm still not sure if it's right.
 
|(x-3)/(x-4)| < epsilon, |x-3| =/= 1, take delta = 1/2 --> - 1/2 < x-3 < 1/2, 5/2 < x < 3 7/2 --> -3/2 < x - 4 < -1/2 --> |x-4| > 1/2 --> |(x-3)/(x-4)| < 2|(x-3)| < epsilon


in short, delta = min(1/2 , epsilon/2)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top