How do I prove this seemingly simple trigonometric identity

AI Thread Summary
The discussion revolves around proving a trigonometric identity involving expressions for a, b, and c defined in terms of sine, tangent, and secant functions. Participants highlight issues with LaTeX formatting and suggest proper embedding techniques for clarity. They emphasize the importance of simplifying trigonometric expressions and using relevant identities to facilitate the proof. The conversation also stresses that complete solutions cannot be provided directly, encouraging users to demonstrate their understanding and efforts first. Ultimately, the user is advised to equate two derived expressions and simplify to complete the proof.
Ganesh Ujwal
Messages
51
Reaction score
0
Originally posted in a technical section, so missing the template
Mod note: Fixed the LaTeX.
##a=sinθ+sinϕ##

##b=tanθ+tanϕ##

##c=secθ+secϕ##Show that,

##8bc=a[4b^2 + (b^2-c^2)^2]##

I tried to solve this for hours and have gotten no-where. Here's what I've got so far :

##a= 2\sin(\frac{\theta+\phi}{2})\cos(\frac{\theta-\phi}{2}) ##

## b = \frac{2\sin(\theta+\phi)}{\cos(\theta+\phi)+\cos(\theta-\phi)}##

##c=\frac{2(\cos\theta+\cos\phi)}{\cos(\theta+\phi)+\cos(\theta-\phi)}##

##a^2 = \frac{\sin^2(\theta+\phi)[\cos(\theta+\phi)+1]}{\cos(\theta+\phi)+1}##

##\\cos(\theta-\phi)=\frac{ca}{b}-1##

##sin^2(\frac{\theta+\phi}{2})=\frac{2a^2b}{4(ca+b)}##
 
Last edited:
Physics news on Phys.org
There's something wrong with your latex as it doesn't render at all.
 
jedishrfu said:
There's something wrong with your latex as it doesn't render at all.
please fix it
 
You need to edit your post to fix it. I don't have the authority to do that.

You're probably missing the tags for embedding latex in your post.
 
how to embed latex? please show to me.
i am waiting
 
Ganesh Ujwal said:
how to embed latex? please show to me.
\\ doesn't do anything. At the beginning and end of each line, put # # (no space between).
 
alright then please anybody solve my problem, i am stuck.
 
Did you try simply subbing a,b and c expressions into the right hand side to see what you get.

Also you didn't show us what identities you know that would be relevant to this problem.
 
The ratio, a/b and a/c are very useful in this problem. Simplify your trig expressions for those a= , b= , and c= , and then using trig identities for sin(x+y) and cos(x+y), and cos(x-y), the algebra will simplify greatly. Do not immediately substitute those more complex trig expressions into your equation in a, b, and c.
 
  • #10
i tried like this:
\begin{align*}4\cos^2(\theta)\cos^2(\phi)b^2 &= 4\cos^2(\theta)\cos^2(\phi)(\tan(\theta) + \tan(\phi))^2 \\
&= 4(\sin(\theta)\cos(\phi) + \cos(\theta)\sin(\phi))^2 \\
&= 4\sin^2(\theta + \phi) \\
&= 16\sin^2((\theta + \phi)/2)\cos^2((\theta + \phi)/2) \\
&= 16(1 - \cos^2((\theta + \phi)/2))\cos^2((\theta + \phi)/2) \\
&= 16\cos^2((\theta + \phi)/2) - 16\cos^4((\theta + \phi)/2)\end{align*}
\begin{align*}c^2 - b^2 &= \sec^2\theta + \sec^2\phi + 2\sec(\theta)\sec(\phi) - (\tan^2\theta + \tan^2\phi + 2\tan(\theta)\tan(\phi)) \\
&= 2 + 2\sec(\theta)\sec(\phi) - 2\tan(\theta)\tan(\phi)\end{align*}
\begin{align*}\cos(\theta)\cos(\phi)(c^2 - b^2) &= 2(\cos(\theta)\cos(\phi) + 1 - \sin(\theta)\sin(\phi)) \\
&= 2(1 + \cos(\theta + \phi)) \\
&= 4\cos^2((\theta + \phi)/2)\end{align*}
\begin{align*}cos^2(\theta)\cos^2(\phi)(b^2 - c^2)^2 = 16\cos^4((\theta + \phi)/2\end{align*}
\begin{align*}cos^2(\theta)\cos^2(\phi)(4b^2 + (b^2 - c^2)^2) = 16\cos^2((\theta + \phi)/2\end{align*}
\begin{align*}8\cos^2(\theta)\cos^2(\phi)bc/a &= 8\cos^2(\theta)\cos^2(\phi)(\tan(\theta) + \tan(\phi))(\sec(\theta) + \sec(\phi))/(\sin(\theta) + \sin(\phi)) \\
&= 8(\sin(\theta)\cos(\phi) + \cos(\theta)\sin(\phi))(\cos(\theta) + \cos(\phi))/(\sin(\theta) + \sin(\phi)) \\
&= 8\sin(\theta + \phi)(\cos(\theta) + \cos(\phi))/(\sin(\theta) + \sin(\phi)) \\
&= \frac{8(2\sin((\theta + \phi)/2)\cos((\theta + \phi)/2))(2\cos((\theta + \phi)/2)\cos((\theta - \phi)/2))}{2\sin((\theta + \phi)/2)\cos((\theta - \phi)/2)} \\
&= 16\cos^2((\theta+\phi)/2)\end{align*}
now how should i proceed it?
 
  • #11
Ganesh Ujwal said:
alright then please anybody solve my problem, i am stuck.
The rules in this forum (under Homework Guidelines at https://www.physicsforums.com/threads/physics-forums-global-guidelines.414380/) don't permit solving your problem for you.
Giving Full Answers: On helping with questions: Any and all assistance given to homework assignments or textbook style exercises should be given only after the questioner has shown some effort in solving the problem. If no attempt is made then the questioner should be asked to provide one before any assistance is given. Under no circumstances should complete solutions be provided to a questioner, whether or not an attempt has been made.
 
  • #12
Ganesh Ujwal said:
now how should i proceed it?
Aren't you basically done? You have two expressions that equal ##16\cos^2\frac{\theta+\phi}2##. Set them equal to each other and simplify.
 

Similar threads

Replies
3
Views
2K
Replies
8
Views
2K
Replies
15
Views
2K
Replies
11
Views
2K
Replies
33
Views
2K
Replies
6
Views
3K
Back
Top