How Do I Set Up the Schrodinger Equation for This Wave Function?

  • Thread starter Thread starter apigban
  • Start date Start date
apigban
Messages
6
Reaction score
0
Hi! I am having some problems in setting up the Schrodinger equation for a particle described by the wave function:

\Psi = A sinh (x)

should I use the exponential form of the hyperbolic function?

[URL]http://62.0.5.135/upload.wikimedia.org/math/9/c/7/9c74b71126c6bb1f4d6b865019a2735e.png[/URL]


Also, for normalization, do you have any guides that show how to form the complex conjugate of the above function (i don't see the complex parts).
 
Last edited by a moderator:
Physics news on Phys.org
What's the problem with the Schroedinger equation? Are you using the time-independent version (I assume you should be), is there a potential energy associated with this wavefunction?

Further, the complex conjugate of a real valued function is just the real function again. So normalization should look something like:

1=A2 \intsinh2(x)dx
 
Last edited:
This is my solution to the normalization of the wave equation. I am sorry I am totally new at this.

[PLAIN]https://fbcdn-sphotos-a.akamaihd.net/hphotos-ak-snc6/249293_246586558696823_100000364410765_866703_7618168_n.jpg

Is it correct? I just followed wikipedia's
http://en.wikipedia.org/wiki/Normalizable_wave_function#Example_of_normalization

My question on the Schroedinger Eq. is that: Should i use the exponential form of the hyperbolic function? or does it matter if i use the hyperbolic? In the normalization above i used the exponential form.
 
Last edited by a moderator:
When you use the wavefunction in the Schrodinger equation, it shouldn't matter what form (hyperbolic or exponential) you use. Your normalization is off however. The integral of sinh2(x) is:

Exponential form: \frac{1}{4} (exp(2x)/2+exp(-2x)/2-2x)
Hyperbolic form: \frac{1}{4} (sinh(2x) -2x)

Further, you need to take the integral only between o and L, the other parts can be ignored. I may be reading this wrong, but it seems like you tried to absorb the exponentials into A2 and ignored any actual integration.

Cheers,
-Malus
 
thanks! I did the integration. and found what the factor is. thanks also for pointing that hyperbolic or exponentials can be used!.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top