How do I take the derivative of (2x+1)^3(3-x)^2?

  • Thread starter Thread starter silentsaber
  • Start date Start date
  • Tags Tags
    Derivative
silentsaber
Messages
9
Reaction score
0

Homework Statement


taking the derivative of this:(2x+1)^3(3-x)^2

Answer Choices
a.) 2(2x+1)^2(3-x)(x-10)
b.) -2(2x+1)^2(3-x)(x-10)
c.) 2(2x+1)^2(3-x)(5x-3)
d.) -2(2x+1)^2(3-x)(5x-8)
e.) -12(2x+1)^2(3-x)



Homework Equations


Product rule and chain rule


The Attempt at a Solution


i was thinking of using product rule and then the chain rule

after i used the product and chain rule i get 2(3)(2x+1)^2(3-x)^2+(-1)(3-x)(2x+1)^3 ..but then when i look at the answer choices it doesn't match any am i missing a step or..?
 
Last edited:
Physics news on Phys.org
hey ilent saber, i'd check your working, i tink you missed a factor of 2 in the 2nd half of product rule

then look at grouping terms with (2x+1)^2(3-x), then simplifying the rest
 
Do it this way:

(2x+1)^3(3-x)^2

u=2x+1, z=3-x

[(2x+1)^3(3-x)^2]'=[((2x+1)^3)'(3-x)^2+(2x+1)^3((3-x)^2)']=[(u^3)'u'(3-x)^2+(2x+1)^3((z^2)'z')]

Now just find the derivatives of the remaining terms. :smile:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top