How Do Stirling Numbers of the First Kind Relate to Combinatorial Formulas?

  • Thread starter Thread starter pleasehelp328
  • Start date Start date
  • Tags Tags
    Proof
pleasehelp328
Messages
3
Reaction score
0
Say we have sterling numbers of the first kind where we're given s(n, n-2) = 2(nC3) + 3(nC4)
for n greater than or equal to 4.

I know the left hand side we have n people, and we wish to seat them at n-2 circular tables, but I need help with the right hand side! I would greatly appreciate any help at ALL!
 
Physics news on Phys.org
Any math experts willing to help?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top