I How Do Supremum and Infimum Relate When s < t for All s in S and t in T?

wang jia le
Messages
3
Reaction score
0
Let S and T be subsets of R such that s < t for each s ∈ S and each t ∈ T. Prove carefully that sup S ≤ inf T.

Attempt:

I start by using the definition for supremum and infinum, and let sup(S)= a and inf(T)= b

i know that a> s and b< t for all s and t. How do i continue? , do i prove it directly starting from s< t or will it be easier to use proof by contradiction?
 
Physics news on Phys.org
wang jia le said:
Let S and T be subsets of R such that s < t for each s ∈ S and each t ∈ T. Prove carefully that sup S ≤ inf T.

Attempt:

I start by using the definition for supremum and infinum, and let sup(S)= a and inf(T)= b

i know that a> s and b< t for all s and t. How do i continue? , do i prove it directly starting from s< t or will it be easier to use proof by contradiction?

Try contradiction.
 
Usually the definition of upper/lower bound would only imply s \leq \sup(S) for all s \in S and \inf(T) \leq t for all t \in T. In other words, the upper and lower bounds can be in the set themselves. The stated result should hold regardless though.

Just start with \inf(T) \lt \sup(S) and go from there. There must be an s \in S such that \inf(T) \lt s ( otherwise \inf(T) would be an upper bound of S that's less than \sup(S) ). But then, for similar reasons, there must be a t \in T such that t \lt s ( fill in the details ).
 
Last edited:
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top