arivero
Gold Member
- 3,481
- 187
Consider the separation of the Riemann Zeta function in two terms
\begin{flalign*}<br /> \zeta(s) &= 1^{-s} + 2^{-s} + 3^{-s} + 4^{-s} + 5^{-s} + 6^{-s} + ... = & \\<br /> &=(1^{-s} + 3^{-s} + 5^{-s} + 7^{-s} + 9^{-s}+ ... ) + <br /> ( 2^{-s} + 4^{-s} + 6^{-s} + 8^{-s} + ...)&=& \\<br /> &= (1 - 2^{-s}) \zeta(s) + 2^{-s} \zeta (s) &=& \zeta (s) &<br /> \end{flalign*}
which is pretty tautological, and now the same play with the Dirichlet Eta function,
\begin{flalign*} <br /> \eta(s) &= 1^{-s} - 2^{-s} + 3^{-s} - 4^{-s} + 5^{-s} - 6^{-s} + ... = \\<br /> &=(1^{-s} + 3^{-s} + 5^{-s} + 7^{-s} + 9^{-s}+ ... ) <br /> - ( 2^{-s} + 4^{-s} + 6^{-s} + 8^{-s} + ...) &=& \\<br /> &= (1 - 2^{-s}) \zeta(s) - 2^{-s} \zeta (s) &=& (1 - 2^{1-s}) \zeta (s) <br /> \end{flalign*}
The pair of functions J_\mp \equiv \frac 12 (\zeta(s) \pm \eta(s)) smells to susy quantum mechanics, doesn't it? Note how the pole (in s=1) of the Zeta function is canceled by substracting both functions, and that the difference between J_+ and J_- amounts to a zero in s=0.
Is this formalism used in number theory? Have the functions J\pm some specific name?
\begin{flalign*}<br /> \zeta(s) &= 1^{-s} + 2^{-s} + 3^{-s} + 4^{-s} + 5^{-s} + 6^{-s} + ... = & \\<br /> &=(1^{-s} + 3^{-s} + 5^{-s} + 7^{-s} + 9^{-s}+ ... ) + <br /> ( 2^{-s} + 4^{-s} + 6^{-s} + 8^{-s} + ...)&=& \\<br /> &= (1 - 2^{-s}) \zeta(s) + 2^{-s} \zeta (s) &=& \zeta (s) &<br /> \end{flalign*}
which is pretty tautological, and now the same play with the Dirichlet Eta function,
\begin{flalign*} <br /> \eta(s) &= 1^{-s} - 2^{-s} + 3^{-s} - 4^{-s} + 5^{-s} - 6^{-s} + ... = \\<br /> &=(1^{-s} + 3^{-s} + 5^{-s} + 7^{-s} + 9^{-s}+ ... ) <br /> - ( 2^{-s} + 4^{-s} + 6^{-s} + 8^{-s} + ...) &=& \\<br /> &= (1 - 2^{-s}) \zeta(s) - 2^{-s} \zeta (s) &=& (1 - 2^{1-s}) \zeta (s) <br /> \end{flalign*}
The pair of functions J_\mp \equiv \frac 12 (\zeta(s) \pm \eta(s)) smells to susy quantum mechanics, doesn't it? Note how the pole (in s=1) of the Zeta function is canceled by substracting both functions, and that the difference between J_+ and J_- amounts to a zero in s=0.
Is this formalism used in number theory? Have the functions J\pm some specific name?
Last edited: