How do we determine the ideal size for our wind turbine's generator?

AI Thread Summary
Determining the ideal size for a wind turbine's generator involves calculating the torque needed to achieve the desired power output, which in this case is 10 W. The discussion highlights the importance of estimating back-torque and efficiency, with a conservative estimate of 75% efficiency suggested for a homemade generator. It is noted that self-starting capability may require more torque than maintaining operation at nominal speed, influencing the design parameters. The participants emphasize the significance of bearing quality over weight for improving efficiency. Ultimately, approximating torque using the provided formulas is deemed a practical approach for the project's needs.
Onjii
Messages
7
Reaction score
0
Hi!

I'm working on a project where we are building a windturbine from the bottom up. Myself and a colleague are designing a double stator axial flux generator for our turbine. Our requirements are that we deliver about 10 W at nominal rotation speed. It's a direct axis driven generator propelled by a VAWT. The issue that has been bothering us is how we determine the size of the generator. We found some rather advanced articles on the back-torque of the machine but are still a bit lost. So to put our concerns into a question. What is a common design parameter that makes a generator too heavy/too light to drive?

Thanks in advance!
 

Attachments

Engineering news on Phys.org
Designing a generator for a specific purpose usually requires considerable technical knowledge .

I see though that you are building a very small system intended to deliver just 10 W . At that power level there are many ready made dynamos and motors that could be made use of at very little cost .
 
Thanks for the reply!
I'm aware that we are essensially building a bike dynamo. But the project is to build all the components ground up (including coils etc). We already have a simulink model giving us the emf from the rotation speed which tells us how many poles and so forth we will need. We just feel that we are lacking some knowledge on how to model the back-torque to make sure our turbine can drive it once we assemble the whole machine
.
 
Must you calculate the torque from first principles, or just estimate it?

If efficiency is 100%, then torque*speed = voltage*current (after suitable units conversion.) Most generators are pretty efficient, so a guess of 75% efficiency for your home made generator seems to be pretty conservative. So just divide the required 10 watts by 0.75 to get estimated torque*speed.

To improve efficiency, my guess is that the bearings are more important than the weight.

Is your apparatus required to be self starting? You may need significantly more torque to spin it up starting from zero RPM than to keep it running at rated RPM, and the acceleration does depend on weight. If self start is not required, then a push by the hand to start it spinning would be allowed. Alternatively, he electric load could be removed for startup and switched in after achieving rated speed. Both alternatives mean manual intervention.
 
  • Like
Likes Onjii
You have the rotation speed . Make a conservative guess at the dynamo efficiency .

Shaft torque * (revs/sec) * 2 * Pi = dynamo output power / dynamo efficiency

Torque in N-m and power in W .

Example : shaft speed = 50 revs/sec . (3000 rpm)
output power = 10 W
efficiency = 0.4

Shaft torque * 50 * 2 * 3.142 = 10 / 0.4

Shaft torque = 0.08 N-m
 
  • Like
Likes Onjii
Appreciate the help guys!
I think we will settle with approximating the torque like you just described.
Thanks!
 
Very basic question. Consider a 3-terminal device with terminals say A,B,C. Kirchhoff Current Law (KCL) and Kirchhoff Voltage Law (KVL) establish two relationships between the 3 currents entering the terminals and the 3 terminal's voltage pairs respectively. So we have 2 equations in 6 unknowns. To proceed further we need two more (independent) equations in order to solve the circuit the 3-terminal device is connected to (basically one treats such a device as an unbalanced two-port...
suppose you have two capacitors with a 0.1 Farad value and 12 VDC rating. label these as A and B. label the terminals of each as 1 and 2. you also have a voltmeter with a 40 volt linear range for DC. you also have a 9 volt DC power supply fed by mains. you charge each capacitor to 9 volts with terminal 1 being - (negative) and terminal 2 being + (positive). you connect the voltmeter to terminal A2 and to terminal B1. does it read any voltage? can - of one capacitor discharge + of the...
Thread 'Weird near-field phenomenon I get in my EM simulation'
I recently made a basic simulation of wire antennas and I am not sure if the near field in my simulation is modeled correctly. One of the things that worry me is the fact that sometimes I see in my simulation "movements" in the near field that seems to be faster than the speed of wave propagation I defined (the speed of light in the simulation). Specifically I see "nodes" of low amplitude in the E field that are quickly "emitted" from the antenna and then slow down as they approach the far...
Back
Top