How do we prove tangent lines to conics using homogeneous coordinates?

erohanip
Messages
1
Reaction score
0
I am unable to comprehend the proof for tangent line to conics. Here is the proof as per the book (Multiview Geometry by Hartley and Zisserman). Everything is in homogeneous coordinates.


The line l = Cx passes through x, since lT x = xT Cx = 0. If l has one-point contact with the conic, then it is a tangent, and we are done. Otherwise suppose that l meets the conic in another point y. Then yT Cy = 0 and xT Cy = lTy = 0. From this it follows that (x + αy)T C(x + αy) = 0 for all α, which means that the whole line l = Cx joining x and y lies on the conic C, which is therefore degenerate.

where C is conic coefficient matrix = [ a, b/2, d/2 ; b/2, c, e/2 ; d/2, e/2, f ]

I don't see how the underlined portion follows from the above premise. And even if it does how is the line a tangent to the conic?
 
Physics news on Phys.org
Just multiply out the expression. The four terms xTCx, xTCy, yTCx, yTCy are all zero.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top