How Do You Analyze Forces and Motion in a Hot Wheels Lab Experiment?

AI Thread Summary
To analyze forces and motion in a Hot Wheels lab experiment, the net force (fnet) can be determined even without an applied force by considering the conservation of energy principles. The potential energy at the initial height is converted into kinetic energy as the car descends, allowing for calculations of theoretical and actual distances traveled using photogate data. Measuring the distance by hand during setup can enhance accuracy, especially in a frictionless scenario. The maximum velocity of the car at the lowest point can be derived from the height, showing that velocity is independent of mass. Clarification on specific forces, such as the normal force during maneuvers like a 360-degree loop, is essential for accurate calculations.
pamelaislost
Messages
1
Reaction score
0
How would you find fnet if there is no force applied?
does anything happen to the other forces as well?

how do you find the theoretical and actual distances traveled up and down an incline if you have photogate data and need to find the theoretical and actual distance traveled?
should i have measured the distance by hand when i set up the experiment?
 
Physics news on Phys.org
Given the information you provided, the following is assumed: frictionless surface and wheel bearings, and no air resistance. Then this is a conservation of energy problem. Initially, the car is at an initial height h0 above the lowest point of the track with an initial velocity of zero. So the stored energy (potential energy) is m*g*h0 where m is the mass of the car, and g is the acceleration of gravity, and the initial kinetic energy is zero (v = 0). When the car is released, the potential energy is converted into kinetic energy, KE = 1/2mv^2. The sum of the potential energy and kinetic energy must always equal the initial energy, m*g*h0. Therefore, the velocity of the car is only a function of the height. When the car is at the lowest point on the track, all the potential energy has been converted to kinetic energy i.e. m*g*h0 = 1/2mv^2 and solve for v. This is the maximum velocity of the car. Velocity calculations at any height will show that v is independent of the mass of the car so the mass does not need to be measured. Please clarify the forces you are trying to calculate. Is it the normal force while the car is in a 360 degree loop? The mass of the car will be needed for force calculations.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top