How Do You Calculate Null Geodesics for the Given Schwarzschild Line Element?

Confused Physicist
Messages
14
Reaction score
0
Hi, I'm the given the following line element:

ds^2=\Big(1-\frac{2m}{r}\large)d\tau ^2+\Big(1-\frac{2m}{r}\large)^{-1}dr^2+r^2(d\theta ^2+\sin ^2 (\theta)d\phi ^2)

And I'm asked to calculate the null geodesics.

I know that in order to do that I have to solve the Euler-Lagrange equations. For this I always do the following. First I calculate the Lagrangian squared in terms of the proper time ##\tau##. In this case first I have written the line element as:

ds^2=-\Big(1-\frac{2m}{r}\Big)c^2dt ^2+\Big(1-\frac{2m}{r}\Big)^{-1}dr^2+r^2(d\theta ^2+\sin ^2 (\theta)d\phi ^2)

And then the Lagrangian squared:

\mathcal{L}^2=-\Big(1-\frac{2m}{r}\Big)c^2\dot{t}^2+\Big(1-\frac{2m}{r}\Big)^{-1}\dot{r}^2+r^2(\dot{\theta}^2+\sin^2(\theta)\dot{\phi}^2)

Where ##\dot{ }## denotes derivative with respect to proper time: ##d/d\tau##.

When I solve the E-L equation for ##t## and ##r## I get:

\dot{t}=\frac{k_t}{1-2m/r}
\dot{r}=k_r\Big(1-2m/r\Big)

I'm doing this because I'm looking for a change of variable which I believe has to be:

\frac{dr}{dt}=\pm \Big(\frac{1}{1-2m/r}\Big)

What am I doing wrong?

Thansk!
 
Last edited:
Physics news on Phys.org
Post your partial results.
 
  • Like
Likes Confused Physicist
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top