How Do You Calculate Probability for a Normally Distributed Variable?

  • Thread starter Thread starter twrtoad
  • Start date Start date
  • Tags Tags
    Probability
twrtoad
Messages
1
Reaction score
0
P(10≤x≤12)
σ=2,μ=11
x= a normally distrributed random variable

I don't even know where to begin to solve this. I was hoping someone could show me how and explain it to me like I am a 6 year old.
thanks everybody in advance.
 
Physics news on Phys.org
Let y = (x-μ)/σ. Then y is a standard normally distributed random variable. The domain of interest is then -1/2≤y≤1/2. Look up a table for the standard normal distribution to get the answer.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top