How Do You Calculate the Cardinality of a Special Set?

  • Thread starter Thread starter haki
  • Start date Start date
  • Tags Tags
    Cardinality Sets
AI Thread Summary
The discussion focuses on calculating the cardinality of a set A, which includes natural numbers from 1 to 6000 that are divisible by 3 or 7 but not by 105. The initial calculation estimates 2572 valid numbers, which is derived from the counts of multiples of 3 and 7, adjusted for overlaps. After excluding multiples of 105, the final cardinality of set A is determined to be 2548. For the second part, the analysis identifies a pattern in the remainders of multiples of 7, concluding that approximately 190 of these numbers give a remainder of 2 when divided by 3. The calculations and reasoning presented are generally sound and indicate a solid understanding of the problem.
haki
Messages
161
Reaction score
0
[Resolved][Sets] Cardinality problem

Homework Statement



let A be a Set of all natural numbers from 1 to 6000 that are divsible by 3 or 7 but not 105.

1.What is the cardinality of A?

2.How many numbers in A give 2 as the remained of division by 3.

Homework Equations


The Attempt at a Solution



1. My thinking was like this

How many multiples of 3 are from 1 to 6000. Well 6000/3 = 2000. How many multiples of 7? Well 6000/7 = 857. How many multiples of 7 are also multiples of 3? I would say 2000 / 7 = 285 that is in that 2000 multiples of 3 , 285 multiples are multiples of 7 aswell. That gives

+2000 multiples of 3
+857 multiples of 7 -285 multiples of 7 that are multiples of 3 aswell

that gives a total of 2572 numbers

now to put !divison by 105 into picture. Soo they must not be multiples of 105. We just substract multiples of 105, right? that is 2572 / 105 = 24, that is

the cardinality of A is 2572 - 24 = 2548.

Is any of the above correct or even close to a solution?

Now for the second part my thinking is like this, what do we have in those 2548 numbers, well we have something like this multiples of 3 and 7 but not 105. Now multiples of 3 will ofcorse not give the proper remainder, now for 7,

7 // remainders 3*2 + 1 rem 1
14 // rem 2
21 // 0
28 // 1
35 // 2
42 // 0
49 // 1
56 // 2
63 // 0

Now I noticed a pattern that multiples of 7 that give remainder 2 have a pattern, meanin starting from 2nd multiple which gives 2 as a remainder then every 2*k + 1 multiple gives 2 as the remainder. Meaning if I take 3 successive multiples of 7 one of them is guarantted to give 2 as the remainder. Meaning if there are 572 multiples of 7 (not multiples of 3) then there are 572 / 3 = 190 that will give 2 as the remainer.

Any good? At least close?
 
Last edited:
Physics news on Phys.org
I think I got it. Thanks anyway.
 
I picked up this problem from the Schaum's series book titled "College Mathematics" by Ayres/Schmidt. It is a solved problem in the book. But what surprised me was that the solution to this problem was given in one line without any explanation. I could, therefore, not understand how the given one-line solution was reached. The one-line solution in the book says: The equation is ##x \cos{\omega} +y \sin{\omega} - 5 = 0##, ##\omega## being the parameter. From my side, the only thing I could...
Back
Top