How Do You Calculate the Cramer-Rao Lower Bound for θ?

  • Thread starter Thread starter Sander1337
  • Start date Start date
  • Tags Tags
    Ion
Sander1337
Messages
10
Reaction score
0
Hi there,

I've got a distribution function for an assignment for my school here and I don't get the hang of the question;

f(x) = θ* 2^θ * x^(-θ-1) for x>2
0 for else

The assignment is to calculate the Cramer-Rao lower boundry for consistent estimators of θ.

This is what we've got so far;

Cramer-Rao lower boundry:
[-n*E[d^2/dθ^2 ln(f(y))]]^-1

(d^2/dθ^2)ln(f(x)) = -θ^(-2)= CRLB function

Now since our professor didn't explain the Cramer Rao lower boundry we haven't got a clue of how to continue now. Is there someone here who knows how to continue now?

Greetings,

Tony, Siebe & Sander

(question might be in wrong (sub)forum, apoligies for that, don't bother rerouting this question to the right (sub)forum, thanks!)
 
Last edited:
Physics news on Phys.org
Well, the next step is to take the expected value (with respect to x). Since -θ^(-2) does not involve x, it is just a constant, so the expected value is -θ^(-2) itself.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top