How Do You Calculate the Period of a Compound Pendulum with Two Masses?

  • Thread starter Thread starter dgl7
  • Start date Start date
  • Tags Tags
    Period
AI Thread Summary
The discussion focuses on calculating the period of a compound pendulum with two equal masses attached to a light rod. The initial calculations for the center of mass and moment of inertia were incorrect, leading to confusion about the period formula. After identifying the need to apply the parallel axis theorem correctly, the correct moment of inertia was determined, resulting in the accurate period equation. The final period of the pendulum is expressed as T=2pi(41L/45g)^0.5. The clarification of the pivot point and the configuration of the pendulum was also addressed.
dgl7
Messages
8
Reaction score
0

Homework Statement



Consider a light rod of negligible mass and length "L" pivoted on a frictionless horizontal bearing at a point "O." Attached to the end of the rod is a mass "m." Also, a second mass "M" of equal size (i.e., m=M) is attached to the rod (0.2L from the lower end). What is the period of this pendulum in the small angle approximation?

Homework Equations



T=2pi(I/Hgm)^0.5
where H=the length from the center of mass to the point of rotation
rcm=(r1m+r2M)/(m+M)
Icm=m(L1)^2+M(L2)^2
I=Icm+m(d)^2

The Attempt at a Solution


rcm=(r1m+r2M)/(m+M)
rcm=[(L+0.8L)m)]/2m
rcm=0.9L (from the point of rotation)

Icm=mL^2+mL^2
Icm=m[(0.1L)^2+(-0.1L)^2]
Icm=0.02mL^2

I=Icm+md^2
I=0.02mL^2+m(0.9L)^2
I=0.83mL^2

T=2pi(I/Hgm)^0.5
T=2pi(0.83mL2/0.9Lgm)^0.5
T=2pi(83L/90g)^0.5

I'm really unsure as to what I'm doing wrong so it'd be great if someone could point out what I'm doing wrong--perhaps I've mistaken what one of the variable is supposed to represent? Thanks!

P.S. if it helps, the answer is 2pi(41L/45g)^0.5, I'd just love to know how to get to that.

OK so another update. I just realized I'm one digit off--because the answer is 82/90, not 83/90. I think the error must be with finding the Icm, because everything would simplify properly if Icm=0.01 instead of 0.02. I'm just confused as to why Icm would only be with regards to one mass instead of both...

FIGURED IT OUT:
No parallel axis theorem and now the period equation makes sense because we can put in 2m instead of m-->
Solution:

rcm=(r1m+r2M)/(m+M)
rcm=[(L+0.8L)m)]/2m
rcm=0.9L (from the point of rotation)

Icm=mr^2+mr^2
Icm=m(1L)^2+m(0.8L)^2
Icm=1.64L^2

T=2pi(I/Hgm)^0.5
T=2pi(1.64mL^2/0.9Lg2m)^0.5
T=2pi(82L/90g)^0.5
T=2pi(41L/45g)^0.5
 
Last edited:
Physics news on Phys.org
Is there a diagram that goes with this? Where's O?
 
It is a pendulum, thus O is at the opposite end of the rod.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top