How Do You Calculate the Probabilities of Measured Values for a Quantum State?

bluebandit26
Messages
8
Reaction score
0

Homework Statement



Suppose that a Hermitian operator A, representing measurable a, has eigenvectors |A1>, |A2>, and |A3> such that A|Ak> = ak|Ak>. The system is at state:

|psi> = ((3)^(-1/2))|A1> + 2((3)^(-1/2))|A2> + ((5/3)^(1/2))|A3>.

Provide the possible measured values of a and corresponding probabilities.


Homework Equations



(A)(psi) = sum[anCnPsin]

The Attempt at a Solution


It would seem that A1 = (3)^(-1/2), A2 = 2((3)^(-1/2), and A3 = (5/3)^(1/2), but the state is not normalized so the probabilities don't add up to one... so I am confused about how to handle this.
 
Physics news on Phys.org
So normalise |psi>.
BTW, the probabilities of receiving the eigenvalue a_k is the square of the coefficient of |A_k> in |psi>.
 
In general, if |\psi>=\sum c|n> the the probability to find |psi> in the state |n> (and measuring its eigenvalue) is |c|^2=cc* where c* is the complex conjugate of c.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top