How Do You Calculate This Complex Line Integral?

aruwin
Messages
204
Reaction score
0
I have no idea how to even start with this problem. I know the basics but this one just gets complicated. Please guide me!


Find the line integral:
∫C {(-x^2 + y^2)dx + xydy}
When 0≤t≤1 for the curved line C, x(t)=t, y(t)=t^2
and when 1≤t≤2, x(t)= 2 - t , y(t) = 2-t.
Use x(t) and y(t) and C={(x(t),y(t))|0≤t≤2}
Help!
 
Physics news on Phys.org
aruwin said:
I have no idea how to even start with this problem. I know the basics but this one just gets complicated. Please guide me!


Find the line integral:
∫C {(-x^2 + y^2)dx + xydy}
When 0≤t≤1 for the curved line C, x(t)=t, y(t)=t^2
and when 1≤t≤2, x(t)= 2 - t , y(t) = 2-t.
Use x(t) and y(t) and C={(x(t),y(t))|0≤t≤2}
Help!

x(t)=t\,\,,\,y(t)=t^2\Longrightarrow x'(t)=1\,\,,\,y'(t)=2t\,\,,\,\,t\in [0,1]\Longrightarrow \oint_{C_1}(-x^2+y^2)dx+xydy=\int_0^1\left[(-t^2+t^4)\,dt+t^3(2tdt)\right]=
=\int_0^1(3t^4-t^2)dt=\frac{3}{5}-\frac{1}{3}=\frac{4}{15}
and now you do the other part of the curve, with x(t)=2-t\,\,,\,y(t)=2-t\,\,,x'(t)=y'(t)=-1\,\,,\,t\in [1,2], following

the argument as above.

DonAntonio
 
DonAntonio said:
x(t)=t\,\,,\,y(t)=t^2\Longrightarrow x'(t)=1\,\,,\,y'(t)=2t\,\,,\,\,t\in [0,1]\Longrightarrow \oint_{C_1}(-x^2+y^2)dx+xydy=\int_0^1\left[(-t^2+t^4)\,dt+t^3(2tdt)\right]=
=\int_0^1(3t^4-t^2)dt=\frac{3}{5}-\frac{1}{3}=\frac{4}{15}
and now you do the other part of the curve, with x(t)=2-t\,\,,\,y(t)=2-t\,\,,x'(t)=y'(t)=-1\,\,,\,t\in [1,2], following

the argument as above.

DonAntonio

Oh, got it! Well, one important question, how do you know if it's a scalar or vector? Because if it's scalar then we must find the magnitude of the derivatives. In this case, you didn't find the magnitude which means it's a vector but how do you know it is a vector?
 
You start by knowing the difference between a "scalar" and a "vector". Since there was no mention of a vector in this problem, do you have a specific problem where that question might arise?

"Because if it's scalar then we must find the magnitude of the derivatives."
I've never heard of such at thing. The problem here was entirely a "scalar" problem and there is no finding the magnitudes of anything.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top