How Do You Calculate ∂v/∂z from Given Multivariable Equations?

  • Thread starter Thread starter MeMoses
  • Start date Start date
MeMoses
Messages
127
Reaction score
0

Homework Statement



The equations (x^2)(y^3)(z^3)+uvw+1=0, (x^2)+(y^2)+(z^2)+(u^3)+(v^3)+(w^2)=6, u+v+w=x+2y define u, v, and w as functions of x, y, and z. Find ∂v/∂z when x=1, y=0, z=2, u=1

Homework Equations





The Attempt at a Solution


Do I need to solve for v or is there an easier way of solving this problem? I feel like this isn't that hard, but that I am overlooking something simple. Thanks for any help.
 
Physics news on Phys.org
Did you consider using the chain rule?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top