How Do You Construct a [4, 7^2, 3] Code Using MOLS?

SomeRandomGuy
Messages
55
Reaction score
0
Construct a [4, 7^2, 3] code. I know it exists because 7 is prime, so there are 6 MOLS. However, I am not quite sure how to go about constructing this code.
 
Physics news on Phys.org
You sure you have that right? You can't encode 49 symbols in a codeword that's only 4 symbols long.

I don't know the acronym `MOL' either.


This sounds like a homework question -- you can usually metareason these out: it would probably be done using a code (or a technique) that you learned recently.
 
MOLS=mutually orthogonal latin squares

I'm not positive what the (4,7^2,3) notation refers to, I'm guessing a 3-error correcting code with 7^2 codewords of length 4 (7 symbols each position?).

The construction I have in mind would make codewords of length 8 though. This is a pretty standard construction, and assuming it's what you're trying to do: are you having problems producing the MOLS or coming up with the code given a set of 6 MOLS? (or both?)
 
shmoe said:
MOLS=mutually orthogonal latin squares

I'm not positive what the (4,7^2,3) notation refers to, I'm guessing a 3-error correcting code with 7^2 codewords of length 4 (7 symbols each position?).

The construction I have in mind would make codewords of length 8 though. This is a pretty standard construction, and assuming it's what you're trying to do: are you having problems producing the MOLS or coming up with the code given a set of 6 MOLS? (or both?)

Yes, MOLS is mutually orthogonal latin squares. the notation (4, 7^2, 3) referes to an [n, M, d] code where n is the length of each vector in the code, M is the number of vectors, and d is the minimum distance between them.

Anyway, I figured it our, so it's all good. Thanks for the responses.
 
SomeRandomGuy said:
Yes, MOLS is mutually orthogonal latin squares. the notation (4, 7^2, 3) referes to an [n, M, d] code where n is the length of each vector in the code, M is the number of vectors, and d is the minimum distance between them.

Anyway, I figured it our, so it's all good. Thanks for the responses.

ahh, 3 being minimum distance and not the level of error correction would explain how length 4 code words will be sufficient. Much simpler to construct the code when you only need 2 MOLS and not 6!
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top