How Do You Construct the Dual Basis in Dirac Notation?

Gumbercules
Messages
11
Reaction score
0

Homework Statement


my apologies if this question should be posted in the math forum
3-d space spanned by orthonormal basis: (kets) |1>, |2>, |3>. Ket |a> = i|1> - 2|2> - i|3>. Ket |b> = i|1> + 2|3>.

The question is to construct <a| and <b| in terms of the dual basis (kets 1,2,3)


Homework Equations


given above


The Attempt at a Solution


This is my first time seeing this kind of notation, and I am honestly not quite sure what the question is asking. I read that <a| is a linear function of vectors and that when it acts on a ket it produces a dot product. This also means that the bra can be seen as an instruction to integrate. In order to produce <a| would I integrate a*a?
thanks
 
Physics news on Phys.org
Think of the orthonormal basis kets as unit vectors in your 3-d space. A "ket" is a column vector and a "bra" is a row vector. In your example

|a> = i|1> - 2|2> - i|3>

says to me that the ordered "components" of "vector" |a> are (i, -2, -i). [Imagine this as a column 3x1 matrix - I don't know how o make matrices in Latex]. If you wanted to write the same thing as a bra you would say [and this is truly a row 1x3 vector]

<a| = (-i, -2, +i)

Note that the bra is the "complex-conjugate transpose" of the ket.

We write the inner product as a "bra-ket" just like the good-old dot product (matrix multiplication of the 1x3 times the 3x1 which gives a 1x1 or scalar)

<a|a>= (-i)*(i)+(-2)*(-2)+(+i)*(-i) = 1+4+1=6 (stars in this line mean "times" not "complex conjugate")

You can put in functions for |a> = fa(x), in which case

&lt;a|a&gt; =\int f^{*}_{a}(x)f_{a}(x)dx

where the integration over the appropriate limits.



This should get you started.
 
This makes sense. Thank you!
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top