Two comments:
- In particle physics energy is not an entity by itself but a property of particles. You do not turn energy into particles but you turn one collection of particles into another collection of particles where energy and momentum conservation dictate that both collections of particles have the same energy and the same momentum. The example of two photons (or one photon and some atom) turning into an electron-positron pair is not an example of energy turning into electron and positron but an example of a collection of particles (photon+X) turning into a different collection of particles (e+ + e-). Not related to what I wanted to say but for completeness: In the photon+atom reaction, the result is e+ + e- + atom; the atom remains in the final collection and merely absorbs some energy and momentum.
- In theory there is (at least usually) not THE process to create some target collection. For example you can create an electron-positron pair not only with photons but also with different reactions, the simplemost being a Z-boson decaying into electron and positron. You don't find many (for any practical solution you could even say "you don't find any") Z-bosons naturally existing but there's quite some (in theory an infinite amount of) possible configurations that could create the Z for you, e.g. shooting a suitable lepton-antilepton pair or a suitable quark-antiquark pair onto each other. So if you happen to read collection X is created from collection Y, then it should in this context not be read as Y being the only collection that can create X but read as Y being the best-achievable, the most common (in nature or applications), the easiest to understand or perhaps the only experimentally used collection to create X.