How Do You Diagonalize the Chiral Symmetry Breaking Term for Pion Masses?

Filios
Messages
2
Reaction score
0

Homework Statement


I want to diagonalize the quadratic form
$$ m_0((m_u+m_d)\pi^3\pi^3+\frac{2}{\sqrt{3}}(m_u-m_d)\pi^3\pi^8+\frac{1}{3}(m_u+m_d+4m_s)\pi^8\pi^8)$$
which can be found under equation 5.47, in order to get the mass of the η and ##\pi^0## pions. This quadratic form is produced by the term that breaks the Chiral Symmetry ##SU_L(3)\times SU_R(3) ##

Homework Equations


I want to know how to produce the result 5.48 as i am unable till now to do the calculation.

The Attempt at a Solution


I tried to diagonalize the expression using the standard procedure of orthogonal diagonalization. After doing all the calculations i get for the ##\pi^0##: $$m^2_{\pi^0} = m_0\bigg(m_u+m_d-\frac{(m_u-m_d)^2}{2\sqrt{m^2_u+m^2_d+m^2_s-m_um_d-m_um_s-m_dm_s}+2m_s-m_u-m_d}\bigg)$$

which is incorrect. Can anyone help me to figure out what i am doing wrong.
Thank you very much!
 
Last edited:
Physics news on Phys.org
Actually i found it. Taking the taylor expansion for the square root at ##m_s>>m_{u,d}## produces the right answer! Thank you very much!
 
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.
Back
Top