How Do You Differentiate y=sec^2(X) Where X is a Polynomial?

Whitebread
Messages
21
Reaction score
0
I need a quick check on my math. Derivative of composite function y=sec^2(X) where X is a polynomial.
Does it equal:
y'=(secXtanX)(secX)(X)(dy/dx)+(secX)(secXtanX)(dy/dx)(X)+(secX)(secX)(dy/dx)

I'm a little confused on applying the product rule and the chain rule to this function.
 
Last edited:
Physics news on Phys.org
One more question. Compostie function y=csc(x) where X is a polynomial.
Does the first derivative of csc(X) equal:
y'=-csc(X)cot(X)(dy/dx)?
 
Last edited:
I'm not sure what y is, but just apply the chain rule (ie, first the square, then the sec, then X).
 
None of those can be right, since there is no y in your problem!
 
Ugh, stupid little things, I'll edit.
 
y' = dy/dx.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top