How do you find the initial velocity of a projectile given angle/distance?

AI Thread Summary
To find the initial velocity of a projectile given an angle and distance, it's essential to resolve the motion into vertical and horizontal components. The problem involves a ball thrown from a height of 30.0 m at an angle of 20.0° below horizontal, landing 29.3 m away. The key is to use the SUVAT equations to relate the variables of interest, including time, which connects horizontal and vertical motions. The initial velocity can be calculated by determining the time of flight and using the horizontal distance traveled. The user ultimately solved the problem independently after seeking assistance.
iamcgettigan
Messages
2
Reaction score
0
Homework Statement
I am in 10th grade physics. The question is: A person standing on top of a 30.0 m high building throws a ball with an angle of 20.0° below horizontal. If the ball lands 29.3 m away from the building, what is the initial velocity of the ball? I know the answer is 16m/s, however I am unsure of how to arrive at this answer.
Relevant Equations
s=ut+½at^2
I tried resolving the information given into vertical and horizontal components. I then tried to find time, as this is how I would find the initial velocity. However, I am unsure of how to use the angle in this problem to help solve it. I am also unsure of how to find the initial velocity only given angle and distances. Any help would be greatly appreciated!
 
Physics news on Phys.org
iamcgettigan said:
Homework Statement:: I am in 10th grade physics. The question is: A person standing on top of a 30.0 m high building throws a ball with an angle of 20.0° below horizontal. If the ball lands 29.3 m away from the building, what is the initial velocity of the ball? I know the answer is 16m/s, however I am unsure of how to arrive at this answer.
Relevant Equations:: s=ut+½at^2

I tried resolving the information given into vertical and horizontal components. I then tried to find time, as this is how I would find the initial velocity. However, I am unsure of how to use the angle in this problem to help solve it. I am also unsure of how to find the initial velocity only given angle and distances. Any help would be greatly appreciated!
Please post your work as far as you get (and please, not as an image).

In the standard form of constant acceleration equations (SUVAT) there are five variables. Each equation relates four of them, so five equations for vertical motion. Horizontal is somewhat simpler.

The trick is to identify those variables which are of interest and choose your equations accordingly. Any variable you are given in the question and any variable you are asked to find is of interest. A variable which connects the horizontal and vertical motions (there is one here) is also relevant.
 
haruspex said:
Please post your work as far as you get (and please, not as an image).

In the standard form of constant acceleration equations (SUVAT) there are five variables. Each equation relates four of them, so five equations for vertical motion. Horizontal is somewhat simpler.

The trick is to identify those variables which are of interest and choose your equations accordingly. Any variable you are given in the question and any variable you are asked to find is of interest. A variable which connects the horizontal and vertical motions (there is one here) is also relevant.

Thank you for your response. I am sorry to have somewhat wasted your time as I have figured it out. Thanks again.
 
iamcgettigan said:
Thank you for your response. I am sorry to have somewhat wasted your time as I have figured it out. Thanks again.
That's fine - glad you got there by your own efforts.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top