courtrigrad
- 1,236
- 2
Hello all
1. \int 2\sin x + 3\cos x dx Can you even use substitution in this problem. Or can you directly integrate to get \int 2\sin x + 3\cos x dx = -2\cos x + 3\sin x?
2. \int cos^{2} x - cos x dx So u = cos x dx. When we integrate we get \int cos^{2} x - cos x dx = \frac{u^{3}}{3} - \frac{u^{2}}{2} = \frac{(cos x)^3}{3} - \frac{(cos x)^{2}}{2} Is this right?
3. \int sin 2x\ dx. So u = 2x dx Would it be \frac{1}{2} \-cos x?
4. I need help in doing \int e^{\sec x} \sec x\tan x dx
Thanks a lot
1. \int 2\sin x + 3\cos x dx Can you even use substitution in this problem. Or can you directly integrate to get \int 2\sin x + 3\cos x dx = -2\cos x + 3\sin x?
2. \int cos^{2} x - cos x dx So u = cos x dx. When we integrate we get \int cos^{2} x - cos x dx = \frac{u^{3}}{3} - \frac{u^{2}}{2} = \frac{(cos x)^3}{3} - \frac{(cos x)^{2}}{2} Is this right?
3. \int sin 2x\ dx. So u = 2x dx Would it be \frac{1}{2} \-cos x?
4. I need help in doing \int e^{\sec x} \sec x\tan x dx
Thanks a lot

Last edited: