How Do You Integrate Sqrt(2x + 7) dx Using Substitution?

  • Thread starter Thread starter chromecarz00
  • Start date Start date
  • Tags Tags
    Integral
chromecarz00
Messages
2
Reaction score
0

Homework Statement



∫ Sqrt(2x + 7) dx

Homework Equations





The Attempt at a Solution



I know that part of it is
(2x+7) ^ 3/2 , but is there a chain rule to it?
3
 
Physics news on Phys.org
It's the chain rule in a way. Put u=2x+7, du=2dx. When you get the answer check it by differentiation and you'll see the chain rule.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Replies
105
Views
4K
Replies
6
Views
2K
Replies
10
Views
2K
Replies
15
Views
2K
Replies
22
Views
3K
Replies
10
Views
2K
Replies
21
Views
2K
Back
Top