lazypast
- 83
- 0
hi, I've a function here and I am finding it hard to integrate
\int \frac {1}{\sqrt{a^2 - x^2}}
let x = asin(theta) so \frac{dx}{d \theta}=acos \theta
dx=acos \theta d \theta
\int \frac {acos \theta d \theta}{\sqrt{a^2 - a^2 sin^2 \theta}}
\int \frac {acos \theta d \theta}{\sqrt{a^{2} (1 - sin^2 \theta)}}
\int \frac {acos \theta d \theta}{acos \theta} = \int d \theta
i can't continue this as i can't get the right equation which is able to be integrated. any ideas?
\int \frac {1}{\sqrt{a^2 - x^2}}
let x = asin(theta) so \frac{dx}{d \theta}=acos \theta
dx=acos \theta d \theta
\int \frac {acos \theta d \theta}{\sqrt{a^2 - a^2 sin^2 \theta}}
\int \frac {acos \theta d \theta}{\sqrt{a^{2} (1 - sin^2 \theta)}}
\int \frac {acos \theta d \theta}{acos \theta} = \int d \theta
i can't continue this as i can't get the right equation which is able to be integrated. any ideas?