How Do You Normalize a Quantum Wavefunction in One Dimension?

  • Thread starter Thread starter czaroffishies
  • Start date Start date
  • Tags Tags
    Wavefunction
czaroffishies
Messages
14
Reaction score
0
I am very sorry that I did not use latex here. It didn't seem to be functioning properly, but I tried to make this readable.

Homework Statement



The wave function for a particle moving in one dimension is

Psi(x, t) = A x e^[-(sqrt(km)/2(hbar))*x^2] e^[-i*sqrt(k/m)*(3/2)*t]

Normalize this wave function.

Homework Equations



Psi(x,t)^2 = probability that particle is found at point x.
So, total probability of particle being found anywhere is integral from -inf to +inf of Psi*(x, t)*Psi(x,t) dx, where Psi*(x, t) is the complex conjugate of Psi(x, t), and must be equal to 1.

The Attempt at a Solution



First multiplied Psi(x, t) by complex conjugate:

Psi*(x, t) * Psi(x, t) =

(A x e^[-(sqrt(km)/2(hbar))*x^2] e^[i*sqrt(k/m)*(3/2)*t]) times
(A x e^[-(sqrt(km)/2(hbar))*x^2] e^[-i*sqrt(k/m)*(3/2)*t])

= A^2 x^2 e^2*[-(sqrt(km)/2(hbar))*x^2]

= A^2 x^2 e^[-(sqrt(km)/(hbar))*x^2]

This is somewhat embarrassing, but I am not sure I know how to integrate this. And if it can't be integrated by normal means, it probably wouldn't show up as the first problem in an introductory quantum mechanics book.

I'm not seeing where I went wrong... any help is appreciated!
 
Physics news on Phys.org
It's a standard gaussian integral.
 
Sweet, thanks.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top