The "individual pieces", I suspect, are the four sides of the square.
The "unit square" in the complex plane is probably the square with vertices at 0, 1, 1+ i, and i. The bottom side, from 0 to 1, could be parameterized as "t" with 0< t< 1. Obviously, when t= 0, that gives the point "0" and when t= 1 that gives the point "1".
The right side, from 1= 1+ 0i to 1+ i could be parameterized by "1+ ti" with 0< t< 1. When t= 0 that gives the point 1+0i= 1 and when t= 1, it gives 1+ 1i= 1+ i.
The top side, from 1+ i to i= 0+ i could be parameterized by "(1- t)+ i" with 0< t< 1. When t= 0 that gives the point (1- 0)+ i= 1+ i and when t= 1 it gives (1- 1)+ i= i.
Finally, the left side, from i to 0 could be parameterized by "(1- t)i" with 0< t< 1. When t= 0 that gives the point (1- 0)i= i and when t= 1 it gives (1- 1)i= 0.