cashmerelc
- 18
- 0
Homework Statement
Prove \sum_{j,k} \epsilon_{ijk} \epsilon_{ljk} = 2\delta_{il}
Homework Equations
\epsilon_{ijk} \epsilon_{ljk} = \delta_{il}(\delta_{jj}\delta_{kk} - \delta_{jk}\delta_{kj}) + \delta_{ij}(\delta_{jk}\delta_{kl} - \delta_{jl}\delta_{kk}) + \delta_{ik}(\delta_{jl}\delta_{kk} - \delta_{jj}\delta_{kl})<h2>The Attempt at a Solution</h2><br /> <br /> Okay, in cases where subscripts of the Kronecker delta are equal, then \delta_{jj} = 1. <br /> <br /> If the subscripts are not equal, then \delta_{il} = 0. <br /> <br /> So plugging those into the parenthesis of the above equation gives me:<br /> <br /> \delta_{il}(\delta_{jj}\delta_{kk}) ?<br /> <br /> If that is the case, then how could the two inside the parenthesis equal 2? I know I must be missing something.
Last edited: