How do you recover a group from the automorphisms of the forgetful functor?

  • Thread starter Thread starter Jim Kata
  • Start date Start date
  • Tags Tags
    Duality
Jim Kata
Messages
197
Reaction score
10
Ok, I doubt anyone on here will know this, but given a neutral tannakain category there is a bijection between this category and the representations of some group (with some adjectives). I'm not sure how to show that, don't care though. But, to recover the group from the category of representations you look at the automorphisms of the forgetful functor from the category of representations of the the group to the vector space created by the representations of the group. How exactly do you recover the group from the automorphisms of the forgetful functor? Illustrate this with an example.
 
Physics news on Phys.org
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top