How do you solve a linear differential equation using an integrating factor?

roshan2004
Messages
140
Reaction score
0
After multiplying the given differential equation by its integrating factor we get the first step,but I simply couldnot understand the second stage,pls explain it to me.
 

Attachments

  • differential[1].JPG
    differential[1].JPG
    4.6 KB · Views: 400
Physics news on Phys.org
Notice in the second step, if you differentiate y(e^x^3); you will get the left hand side of the first step. so from the first step to the second, you have to undo the product rule of differentiation.
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top