How Do You Solve the Differential Equation y = C(e^(-αt) - e^(-βt))?

  • Thread starter Thread starter larner
  • Start date Start date
larner
Messages
2
Reaction score
0

Homework Statement


X--Y----Z, starting with X only


Homework Equations


y=C(e^-(alpha*t) -e-^beta*t)

C, alpha, beta constts SUCH THAT C >0 0<alpha <beta

show dy/dt= 0 imply t = 1/ (beta -alpha )*ln (beta/alpha)


The Attempt at a Solution



no idea!
 
Physics news on Phys.org
Well, since it asks you to show that dy/dx= 0, have you differentiated
y= c(e^{-\alpha t}- e^{\beta t}?

Set that derivative equal to 0 and solve for t.
 
Thanx, I trying to differentiate. Bt now sorted out! cheers!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top