How Do You Solve the Integral of √x/(1+√x) from 0 to 4?

  • Thread starter Thread starter ddr
  • Start date Start date
  • Tags Tags
    Integral
ddr
Messages
8
Reaction score
0

Homework Statement



4
∫ √x/(1+√x)
0

Homework Equations





The Attempt at a Solution



t=√x ; x=t^2 ; dx= 2t

2
∫ (2t^2)/(1+t)
0

and now?
thanx
 
Physics news on Phys.org
Simplify your denominator with another substitution.
 
Bring the 2 outside the integral and then add and subtract 1 in the numerator.
 
First subtract and then add 1 in the numerator.

Daniel.
 
Hi ddr,

Perform polynomial algebraic division and integrate the result directly.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top