MHB How Do You Solve This Floor Function Equation?

Click For Summary
The equation involves the floor function and fractional part, specifically $\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left\{\dfrac{a^2+ 2a +2}{a^2+ 1}\right\}=\dfrac{2a -a^2}{a^2 + 1}$. Participants discuss methods to isolate variables and simplify the equation. Key strategies include analyzing the behavior of the floor and fractional functions for different values of 'a'. The conversation emphasizes the importance of substituting values and testing cases to find valid solutions. Ultimately, the goal is to determine the values of 'a' that satisfy the equation.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve the equation $\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left\{\dfrac{a^2+ 2a +2}{a^2+ 1}\right\}=\dfrac{2a -a^2}{a^2 + 1}$, where $\{a\}$ denotes the fractional part of $a$.
 
Mathematics news on Phys.org
My attempt:

\[\left \lfloor \frac{2a+1}{a^2+1} \right \rfloor\left \{ \frac{a^2+2a+2}{a^2+1} \right \}=\frac{2a-a^2}{a^2+1}\\\\ \left \lfloor \frac{2a+1}{a^2+1} \right \rfloor\left \{ \frac{a^2+1+2a+1}{a^2+1} \right \}=\frac{2a+1-(a^2+1)}{a^2+1}\\\\ \left \lfloor \frac{2a+1}{a^2+1} \right \rfloor\left \{ \frac{2a+1}{a^2+1} \right \}=\frac{2a+1}{a^2+1}-1\]

Let $q(a) = \frac{2a+1}{a^2+1}$

The function $q$ has two extrema and two asymptotes: View attachment 4761

From the graph it is obvious, that $q$´s range is included in the open interval $(-1,2)$:

\[q: \mathbb{R}\rightarrow Y \subset (-1;2)\]

If $|q| < 1$ there is no solution, because:

\[\left \lfloor q \right \rfloor\left \{ q \right \}=0\cdot q \neq q-1\;\;\; 0 \le q<1\]

And

\[\left \lfloor q \right \rfloor\left \{ q \right \}=(-1)\cdot q \neq q-1 \;\;\; -1<q < 0\]

If $1 \le q < 2$ (for $0 \le a \le 2$) you get:

\[\left \lfloor q \right \rfloor\left \{ q \right \}=(+1)\cdot (q-1) = q-1\]

So the set, $S$, of solutions is: \[S=\left \{ a \in \mathbb{R}\: \: \: |\: \: \: 0 \le a \le 2 \right \}\]
 

Attachments

  • Floor challenge q-graph.png
    Floor challenge q-graph.png
    4.9 KB · Views: 115
Well done, lfdahl, and thanks for participating!:)

My solution:

$\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left\{\dfrac{a^2+ 2a +2}{a^2+ 1}\right\}=\dfrac{2a -a^2}{a^2 + 1}$

$\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left\{1+\dfrac{2a +1}{a^2+ 1}\right\}=\dfrac{2a+1 -a^2-1}{a^2 + 1}$

$\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left\{\dfrac{2a +1}{a^2+ 1}\right\}=\dfrac{2a+1}{a^2 + 1}-1$

$\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left\{\dfrac{2a +1}{a^2+ 1}\right\}=\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor+\left\{\dfrac{2a +1}{a^2+ 1}\right\}-1$

$1-\left\{\dfrac{2a +1}{a^2+ 1}\right\}=\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor-\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left\{\dfrac{2a +1}{a^2+ 1}\right\}$

$1-\left\{\dfrac{2a +1}{a^2+ 1}\right\}=\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left(1-\left\{\dfrac{2a +1}{a^2+ 1}\right\}\right)$

$1=\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor$

Solving it for $x$ we get $\{x:0≤ x≤ 2\}$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K