How Do You Solve This Floor Function Equation?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Function
Click For Summary
SUMMARY

The discussion focuses on solving the equation $\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left\{\dfrac{a^2+ 2a +2}{a^2+ 1}\right\}=\dfrac{2a -a^2}{a^2 + 1}$, where $\{a\}$ represents the fractional part of $a$. Participants analyzed the components of the equation, particularly the floor function and fractional part, to derive solutions. The conversation highlights the importance of understanding the behavior of floor and fractional functions in mathematical equations.

PREREQUISITES
  • Understanding of floor functions and their properties
  • Knowledge of fractional parts and their implications in equations
  • Familiarity with algebraic manipulation and solving equations
  • Basic calculus concepts for analyzing function behavior
NEXT STEPS
  • Study the properties of floor functions in mathematical analysis
  • Explore fractional part functions and their applications in equations
  • Learn techniques for solving complex algebraic equations
  • Investigate the relationship between polynomial functions and their graphical representations
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in advanced equation solving techniques will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve the equation $\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left\{\dfrac{a^2+ 2a +2}{a^2+ 1}\right\}=\dfrac{2a -a^2}{a^2 + 1}$, where $\{a\}$ denotes the fractional part of $a$.
 
Mathematics news on Phys.org
My attempt:

\[\left \lfloor \frac{2a+1}{a^2+1} \right \rfloor\left \{ \frac{a^2+2a+2}{a^2+1} \right \}=\frac{2a-a^2}{a^2+1}\\\\ \left \lfloor \frac{2a+1}{a^2+1} \right \rfloor\left \{ \frac{a^2+1+2a+1}{a^2+1} \right \}=\frac{2a+1-(a^2+1)}{a^2+1}\\\\ \left \lfloor \frac{2a+1}{a^2+1} \right \rfloor\left \{ \frac{2a+1}{a^2+1} \right \}=\frac{2a+1}{a^2+1}-1\]

Let $q(a) = \frac{2a+1}{a^2+1}$

The function $q$ has two extrema and two asymptotes: View attachment 4761

From the graph it is obvious, that $q$´s range is included in the open interval $(-1,2)$:

\[q: \mathbb{R}\rightarrow Y \subset (-1;2)\]

If $|q| < 1$ there is no solution, because:

\[\left \lfloor q \right \rfloor\left \{ q \right \}=0\cdot q \neq q-1\;\;\; 0 \le q<1\]

And

\[\left \lfloor q \right \rfloor\left \{ q \right \}=(-1)\cdot q \neq q-1 \;\;\; -1<q < 0\]

If $1 \le q < 2$ (for $0 \le a \le 2$) you get:

\[\left \lfloor q \right \rfloor\left \{ q \right \}=(+1)\cdot (q-1) = q-1\]

So the set, $S$, of solutions is: \[S=\left \{ a \in \mathbb{R}\: \: \: |\: \: \: 0 \le a \le 2 \right \}\]
 

Attachments

  • Floor challenge q-graph.png
    Floor challenge q-graph.png
    4.9 KB · Views: 117
Well done, lfdahl, and thanks for participating!:)

My solution:

$\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left\{\dfrac{a^2+ 2a +2}{a^2+ 1}\right\}=\dfrac{2a -a^2}{a^2 + 1}$

$\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left\{1+\dfrac{2a +1}{a^2+ 1}\right\}=\dfrac{2a+1 -a^2-1}{a^2 + 1}$

$\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left\{\dfrac{2a +1}{a^2+ 1}\right\}=\dfrac{2a+1}{a^2 + 1}-1$

$\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left\{\dfrac{2a +1}{a^2+ 1}\right\}=\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor+\left\{\dfrac{2a +1}{a^2+ 1}\right\}-1$

$1-\left\{\dfrac{2a +1}{a^2+ 1}\right\}=\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor-\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left\{\dfrac{2a +1}{a^2+ 1}\right\}$

$1-\left\{\dfrac{2a +1}{a^2+ 1}\right\}=\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left(1-\left\{\dfrac{2a +1}{a^2+ 1}\right\}\right)$

$1=\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor$

Solving it for $x$ we get $\{x:0≤ x≤ 2\}$
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K