MHB How Do You Solve This Floor Function Equation?

Click For Summary
The equation involves the floor function and fractional part, specifically $\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left\{\dfrac{a^2+ 2a +2}{a^2+ 1}\right\}=\dfrac{2a -a^2}{a^2 + 1}$. Participants discuss methods to isolate variables and simplify the equation. Key strategies include analyzing the behavior of the floor and fractional functions for different values of 'a'. The conversation emphasizes the importance of substituting values and testing cases to find valid solutions. Ultimately, the goal is to determine the values of 'a' that satisfy the equation.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve the equation $\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left\{\dfrac{a^2+ 2a +2}{a^2+ 1}\right\}=\dfrac{2a -a^2}{a^2 + 1}$, where $\{a\}$ denotes the fractional part of $a$.
 
Mathematics news on Phys.org
My attempt:

\[\left \lfloor \frac{2a+1}{a^2+1} \right \rfloor\left \{ \frac{a^2+2a+2}{a^2+1} \right \}=\frac{2a-a^2}{a^2+1}\\\\ \left \lfloor \frac{2a+1}{a^2+1} \right \rfloor\left \{ \frac{a^2+1+2a+1}{a^2+1} \right \}=\frac{2a+1-(a^2+1)}{a^2+1}\\\\ \left \lfloor \frac{2a+1}{a^2+1} \right \rfloor\left \{ \frac{2a+1}{a^2+1} \right \}=\frac{2a+1}{a^2+1}-1\]

Let $q(a) = \frac{2a+1}{a^2+1}$

The function $q$ has two extrema and two asymptotes: View attachment 4761

From the graph it is obvious, that $q$´s range is included in the open interval $(-1,2)$:

\[q: \mathbb{R}\rightarrow Y \subset (-1;2)\]

If $|q| < 1$ there is no solution, because:

\[\left \lfloor q \right \rfloor\left \{ q \right \}=0\cdot q \neq q-1\;\;\; 0 \le q<1\]

And

\[\left \lfloor q \right \rfloor\left \{ q \right \}=(-1)\cdot q \neq q-1 \;\;\; -1<q < 0\]

If $1 \le q < 2$ (for $0 \le a \le 2$) you get:

\[\left \lfloor q \right \rfloor\left \{ q \right \}=(+1)\cdot (q-1) = q-1\]

So the set, $S$, of solutions is: \[S=\left \{ a \in \mathbb{R}\: \: \: |\: \: \: 0 \le a \le 2 \right \}\]
 

Attachments

  • Floor challenge q-graph.png
    Floor challenge q-graph.png
    4.9 KB · Views: 107
Well done, lfdahl, and thanks for participating!:)

My solution:

$\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left\{\dfrac{a^2+ 2a +2}{a^2+ 1}\right\}=\dfrac{2a -a^2}{a^2 + 1}$

$\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left\{1+\dfrac{2a +1}{a^2+ 1}\right\}=\dfrac{2a+1 -a^2-1}{a^2 + 1}$

$\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left\{\dfrac{2a +1}{a^2+ 1}\right\}=\dfrac{2a+1}{a^2 + 1}-1$

$\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left\{\dfrac{2a +1}{a^2+ 1}\right\}=\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor+\left\{\dfrac{2a +1}{a^2+ 1}\right\}-1$

$1-\left\{\dfrac{2a +1}{a^2+ 1}\right\}=\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor-\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left\{\dfrac{2a +1}{a^2+ 1}\right\}$

$1-\left\{\dfrac{2a +1}{a^2+ 1}\right\}=\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left(1-\left\{\dfrac{2a +1}{a^2+ 1}\right\}\right)$

$1=\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor$

Solving it for $x$ we get $\{x:0≤ x≤ 2\}$
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K