\[\left \lfloor \frac{2a+1}{a^2+1} \right \rfloor\left \{ \frac{a^2+2a+2}{a^2+1} \right \}=\frac{2a-a^2}{a^2+1}\\\\ \left \lfloor \frac{2a+1}{a^2+1} \right \rfloor\left \{ \frac{a^2+1+2a+1}{a^2+1} \right \}=\frac{2a+1-(a^2+1)}{a^2+1}\\\\ \left \lfloor \frac{2a+1}{a^2+1} \right \rfloor\left \{ \frac{2a+1}{a^2+1} \right \}=\frac{2a+1}{a^2+1}-1\]
Let $q(a) = \frac{2a+1}{a^2+1}$
The function $q$ has two extrema and two asymptotes:
View attachment 4761
From the graph it is obvious, that $q$´s range is included in the open interval $(-1,2)$:
\[q: \mathbb{R}\rightarrow Y \subset (-1;2)\]
If $|q| < 1$ there is no solution, because:
\[\left \lfloor q \right \rfloor\left \{ q \right \}=0\cdot q \neq q-1\;\;\; 0 \le q<1\]
And
\[\left \lfloor q \right \rfloor\left \{ q \right \}=(-1)\cdot q \neq q-1 \;\;\; -1<q < 0\]
If $1 \le q < 2$ (for $0 \le a \le 2$) you get:
\[\left \lfloor q \right \rfloor\left \{ q \right \}=(+1)\cdot (q-1) = q-1\]
So the set, $S$, of solutions is: \[S=\left \{ a \in \mathbb{R}\: \: \: |\: \: \: 0 \le a \le 2 \right \}\]