EngageEngage
- 203
- 0
[SOLVED] Laplace Transform question
Use the Laplace transform to solve the given IVp
<br /> {\frac {d^{2}}{d{t}^{2}}}y \left( t \right) +2\,{\frac {d}{dt}}y<br /> \left( t \right) +5\,y \left( t \right) ={e^{-t}}\sin \left( 2\,t<br /> \right) <br />
y(0)=1, y'(0)=-1
L(f) = \int^{\infty}_{0}e^{-st}f(t)dt
<br /> L \left( {e^{-t}}\sin \left( 2\,t \right) \right) =2\, \left( <br /> \left( s+1 \right) ^{2}+4 \right) ^{-1}<br />
y'' = Ys^{2}-y(0)s-y'(0)
y' = Ys - y(0)
I first converted the problem into frequency space like so:
Y(s^{2}+2s+5) = 2\, \left( <br /> \left( s+1 \right) ^{2}+4 \right) ^{-1} +2s+3
Y={\frac {2\,{s}^{3}+7\,{s}^{2}+16\,s+17}{ \left( {s}^{2}+2\,s+5<br /> \right) ^{2}}}
Then I used Partial Fractions:
<br /> Y={\frac {As+B}{{s}^{2}+2\,s+5}}+{\frac {Cs+D}{ \left( {s}^{2}+2\,s+5<br /> \right) ^{2}}}<br />
Solving the 4 equations that result I got the following values for the constants:
A = 2
B = 3
C = 0
D = 2
Putting these constants back into my initial partial fractions equation i get:
Y={\frac {2\,s+3}{{s}^{2}+2\,s+5}}+2\, \left( {s}^{2}+2\,s+5 \right) ^<br /> {-2}
<br /> Y=2\,{\frac {s+1}{ \left( s+1 \right) ^{2}+4}}+ \left( \left( s+1<br /> \right) ^{2}+4 \right) ^{-1}+2\, \left( {s}^{2}+2\,s+5 \right) ^{-2}<br />
The first of these two I can find the inverse Laplaces for, but the last I can't figure out what to do with. This is where I am stuck at:
<br /> y=2\,{e^{-t}}\cos \left( 2\,t \right) +1/2\,{e^{-t}}\sin \left( 2\,t<br /> \right) +\mbox {{\tt `\#msup(mi("L"),mo("`}}L^{-1}\mbox {{\tt `"))`}}<br /> \left( 2\, \left( {s}^{2}+2\,s+5 \right) ^{-2} \right)
I cannot figure out what to do with the last term -- I don't know how to put it into a form which i can find the inverse laplace transform for. If someone could please tell me what to do with that I would appreciate it greatly.
Homework Statement
Use the Laplace transform to solve the given IVp
<br /> {\frac {d^{2}}{d{t}^{2}}}y \left( t \right) +2\,{\frac {d}{dt}}y<br /> \left( t \right) +5\,y \left( t \right) ={e^{-t}}\sin \left( 2\,t<br /> \right) <br />
y(0)=1, y'(0)=-1
Homework Equations
L(f) = \int^{\infty}_{0}e^{-st}f(t)dt
<br /> L \left( {e^{-t}}\sin \left( 2\,t \right) \right) =2\, \left( <br /> \left( s+1 \right) ^{2}+4 \right) ^{-1}<br />
y'' = Ys^{2}-y(0)s-y'(0)
y' = Ys - y(0)
The Attempt at a Solution
I first converted the problem into frequency space like so:
Y(s^{2}+2s+5) = 2\, \left( <br /> \left( s+1 \right) ^{2}+4 \right) ^{-1} +2s+3
Y={\frac {2\,{s}^{3}+7\,{s}^{2}+16\,s+17}{ \left( {s}^{2}+2\,s+5<br /> \right) ^{2}}}
Then I used Partial Fractions:
<br /> Y={\frac {As+B}{{s}^{2}+2\,s+5}}+{\frac {Cs+D}{ \left( {s}^{2}+2\,s+5<br /> \right) ^{2}}}<br />
Solving the 4 equations that result I got the following values for the constants:
A = 2
B = 3
C = 0
D = 2
Putting these constants back into my initial partial fractions equation i get:
Y={\frac {2\,s+3}{{s}^{2}+2\,s+5}}+2\, \left( {s}^{2}+2\,s+5 \right) ^<br /> {-2}
<br /> Y=2\,{\frac {s+1}{ \left( s+1 \right) ^{2}+4}}+ \left( \left( s+1<br /> \right) ^{2}+4 \right) ^{-1}+2\, \left( {s}^{2}+2\,s+5 \right) ^{-2}<br />
The first of these two I can find the inverse Laplaces for, but the last I can't figure out what to do with. This is where I am stuck at:
<br /> y=2\,{e^{-t}}\cos \left( 2\,t \right) +1/2\,{e^{-t}}\sin \left( 2\,t<br /> \right) +\mbox {{\tt `\#msup(mi("L"),mo("`}}L^{-1}\mbox {{\tt `"))`}}<br /> \left( 2\, \left( {s}^{2}+2\,s+5 \right) ^{-2} \right)
I cannot figure out what to do with the last term -- I don't know how to put it into a form which i can find the inverse laplace transform for. If someone could please tell me what to do with that I would appreciate it greatly.