How Do You Solve This Special Relativity Integral?

  • Thread starter Thread starter yungman
  • Start date Start date
  • Tags Tags
    Integral
yungman
Messages
5,741
Reaction score
294

Homework Statement



I am trying to solve this given c=10^8m/s.

\int^1_{-1} \frac {dz} { [1- \frac {v^2} {c^2} + \frac {v^2} {c^2} z^2 ]^{\frac {3} {2}}}

The answer is:

\frac 1 {( \frac {v^3}{c^3})} \frac {z} {( \frac {c^2}{v^2}-1 ) \sqrt{( \frac {v^2}{c^2} -1 +z^2})} |^{1}_{-1}

The Attempt at a Solution



I tried substitude with tan \theta= \frac{z}{\sqrt{(\frac {c^2}{v^2})-1}} but it won't work because if v is small, the answer is zero.

Please give me advice how to solve this.

Thanks

Alan
 
Last edited:
Physics news on Phys.org
hi yungman! :smile:

(you keep miscounting the {} :wink:)

try differentiating z/√(a2 + z2) :smile:
 
tiny-tim said:
hi yungman! :smile:

(you keep miscounting the {} :wink:)

try differentiating z/√(a2 + z2) :smile:


Yes I fixed the latex problems I have.

I'll try and come back later.

Thanks
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top