PeterDonis said:
The only issue I see with the book excerpt you gave is that it left out the effect of pressure on the saturation temperature inside the condenser.
Guys
i apologize up front for the seeming scrambledness of this post
but i think to teach refrigeration properly needs a combination of textbook theory and practical hands-on
and this is the result of a few hours' trying to put myself in
@fourthindiana 's shoes.
Here goes. If this only confuses things please advise and i'll delete it.
----------------------------------------------------------------------------
Sometimes it's a useful analytical tool to make a thought experiment that takes things to the extreme. I think it's called "Reducto ad Absurdum" .
What if you reduce the charge so low that the compressor can't raise pressure enough to make any liquid anyplace in the system ?
It'd be in superheat everywhere.
Assume a unit sitting outside on your workbench on 90 degree day.
We remove every bit of refrigerant (and properly reclaim it of course).
The we start the compressor (neglect there's no cooling for it - this is just a thought experiment).
Of course pressure everywhere is zero(30" vacuum) so there's no back pressure meaning the compressor is unloaded. So current is low.
Now add Freon 22 until low side pressure at the compressor comes up to one atmosphere, 14.7 psia (0psig).
That'll be superheated because Freon's saturation temperature at 0psig is between -41 and -42, and we're working outdoors on a 90 degree day.
Here's a snip from the Freon 22 Properties table at
https://wcec.ucdavis.edu/wp-content/uploads/2012/08/DuPont-R22-thermo_prop.pdf
note also there's an entropy column that we'll use in a minute...
so let's find 0psig and 90°F in the superheat table
Entropy at 90°F and 0psig is 0.28034
Entropy has a physical meaning but you can think of it as just GPS coordinates to help you navigate the thermo table.
It'll let us find the compressor's exit temperature.
Let's just assume a compression ratio of 5 for this experiment.
so the high side pressure will be 5 X 14,7psia = 73.5 psia (can i just call it 74 ?)
Now it's a thermodynamics basic that reversible compression (no heat added) doesn't change the entropy
so let's find 0.28034 in the entropy column (S) for 74 psia.
Hmm. That entropy lies between 230 and 240 °F.
So the Freon leaves the compressor around 230 to 240 °F and cools quickly down to 90F in the condenser , and 90°F is still superheated.
It cools so quickly because there's no phase change meaning not very many BTU's are involved yet.
That's why when you first start charging you feel the discharge line get hot but not the condenser. The gas cools quickly to ambient.
Looking at that superheat table's enthalpy in column H, the BTU change from 235-ish to 90 °F is around 143 - 117, just 26 BTU per pound of Freon for the 135 degree cooldown..
So next the Freon goes through the expansion valve where it gets throttled back down to 14.7psia
It's another Thermo fact that throttling is a constant enthalpy process (H-column)
so we can go back to the 14.7 psia (0psig) table and look for where is 117.337 enthalpy in the H column...
here it is
between 70 and 80F
the Freon enters the evaporator still superheated at 75-ish and warms quickly to 90 , again no phase change.
and that's why you feel the low side line just barely cool when you first start charging.
We continue adding refrigerant until discharge pressure becomes high enough to make liquid at 90F..
which is from the saturation table , 168.4 psig (183...psia)
at that point we have zero subcooling. So if there's any liquid in the condenser it's not much.We are just beginning to involve phase change.
Look at the H
Liquid column - it's down to 36.158 BTU/lb
Suction pressure should be ##\frac {discharge ~pressure} {compression~ ratio}## = 183/5 = 36.6psia
which is the pressure in the evaporator
so go back to the saturation table for that pressure
that liquid is going to evaporate at about -3°F, and absorb 94 BTU/lb as it does
but there's not much liquid so it evaporates quickly and gets ever more superheated as it continues toward compressor suction
As we add more refrigerant we can make more than just a tiny droplet of liquid in the condenser
so the liquid level in there will rise
and the greater amount of liquid that's entering the evaporator will fully evaporate further up the evaporator before beginning its superheat
and we move more heat because the heat exchangers are now moving that energy rich "latent heat of vaporization" instead of paltry superheat and subcooling - look at the enhalpy change in Latent Enthalpy H column compared to a few degrees in either liquid or vapor H column.So - the purpose of this tome is to get your mind to envision the significance of phase change to refrigeration
and make it intuitive that BTU-wise,
Subcooling and Superheating are pennies
Phase change is dollars
---------------
so -----
you want a goodly portion of both heat exchangers to be working with dollars not pennies
and the only reason for having superheat at all is to keep from feeding liquid into the compressor..
Here's the diagram Thermodynamicists use to describe a refrigeration cycle
It shows zero subcooling in condenser and zero superheat in evaporator
a real cycle would overshoot the saturation line a little bit , compromise is part of any design.
But now you've seen how to navigate the R22 thermo table and can find the temp & pressure at all five corners of that curve.
and you will find it useful to imagine yourself inside the sealed system flowing along with the refrigerant.
I suggest you practice finding the points in the thermo table for temperatures and pressures that you measure in your lab
When we begin to add numbers to our mental image we are deepening our understanding
again i apologize for the scrambledness of this presentation
just that the math never "clicked" for me until i felt that temperature profile on evaporator and condenser change as i added charge.
Our sense of touch goes through different routes in our brain to the cerebrum than does reading a refrigeration manual or thermo book. Maybe we use more of our brain that way, i really don't know...
That's why i say "Use your everyday sensory experience to refine your everyday science"
and that you ask these questions says you are one who ponders things until they make sense. You will excel .
I hope the above helps.
Print yourself a thermo table for whatever refrigerant you use in school lab and practice navigating it with real measured temperatures and pressures. Teacher will love it.
Good luck in your career -
old jim