How Does a Shifted Harmonic Oscillator Decompose into Eigenfunctions?

prairiedogj
Messages
3
Reaction score
0
I have a wave function which is the ground state of a harmonic oscillator (potential centered at x=0)... but shifted by a constant along the position axis (ie. (x-b) instead of x in the exponential).

How does this decompose into eigenfunctions?? I know it's an infinite sum... but I can't nail the coefficients.

...and...
without knowing the decomposition, how can I get the time development of the average position and momentum?

Help.

Thanks.
 
Physics news on Phys.org
What does \exp\left[-(x-a)^{2}\right] instead of \exp\left(-x^{2}\right) have to do with time dependence of \langle \hat{x}\rangle...?


Daniel.
 
Well, most intuitively, I would assume that shifting the initial wavefunction along the x-axis would affect average position.

Less intuitively, a shifted initial wavefunction in a zero-centered harmonic potential MUST be composed of eigenfunctions... ones centered at zero. Each of these have their own energies and own time development.

As an example... go to THIS applet http://groups.physics.umn.edu/demo/applets/qm1d/index.html
set it to harmonic oscillator, choose the ground state eigenfunction, and then adjust the offset.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top