How Does Engine Power Affect Fuel Mass Flow Rate in Diesel Engines?

AI Thread Summary
Engine power affects fuel mass flow rate in diesel engines, showing a linear relationship up to about 75% load, after which the increase becomes more pronounced. This behavior suggests that higher fuel volumes require longer injection times, leading to inefficiencies. A graph presented indicates that at full load, the fuel mass flow rate deviates from the linear trend, potentially due to increased engine friction. Mechanical losses can be estimated by extrapolating the low power end of the Willans line to zero fuel consumption, revealing friction losses between 2 kW and 4 kW. Understanding these dynamics is crucial for optimizing diesel engine performance.
Alex91
Messages
6
Reaction score
0
Hi

I have been plotting a Willans line, (engine power against fuel mass flow rate) and I noticed that the line is fairly linear up to about 75% and then it starts to increase a bit more dramatically.

  • So I was wondering how does engine power at a fixed RPM effect fuel mass flow rate?
  • Is it directly proportional or is it squared? And how would you prove this?
  • Is there an equation that you can use that shows how the two affect each other?

Any Help is much appreciated.

Cheers

Alex
 
Engineering news on Phys.org
Alex91 said:
… then it starts to increase a bit more dramatically.
Which increases, the power or the fuel flow?
It would help if you could post a copy of the graph with annotations on the scales.

High fuel flow will require a greater time to inject so it will not be as efficient.
 
Hi,

Thanks for the reply.

I have attached a graph of the power against fuel mass flow rate at 1000rpm.

As the engine reaches it's full load, the fuel mass flow rate starts to increase a lot more dramatically. As you can see from the graph, the last four points don't really follow the linear trend of the rest of the graph..

It's almost as if at the very highest loads the engine friction increases a lot more for some reason.

Cheers

Alex
 

Attachments

  • Fuel against power.jpg
    Fuel against power.jpg
    12.3 KB · Views: 634
Your graph shows what looks like a very gentle exponential curve. The curvature is I believe due to the higher fuel volumes requiring a greater period of injection. The line should not be expected to be straight.

Alex91 said:
It's almost as if at the very highest loads the engine friction increases a lot more for some reason.
As the two end points fall below the exponential trend, an opposite conclusion is also possible. I cannot explain those two or three points at the high kW end. It is possible that there could be a significant error in the 14 kW measurement. Whatever the interpretation, it is the wrong end of the graph to yield an estimate of the mechanical losses at the test RPM.

The mechanical losses can be estimated by extrapolating the low power end of the Willans line to zero fuel consumption. The negative x–axis intercept then represents the mechanical power loss. That is the friction of the motor at the test RPM. The extension about the origin is missing from your graph so the extrapolation is not easy. See my attached approximation that shows mechanical losses are somewhere between 2 kW and 4 kW.
 

Attachments

  • extrapolated.jpg
    extrapolated.jpg
    10.9 KB · Views: 667
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'd like to create a thread with links to 3-D Printer resources, including printers and software package suggestions. My motivations are selfish, as I have a 3-D printed project that I'm working on, and I'd like to buy a simple printer and use low cost software to make the first prototype. There are some previous threads about 3-D printing like this: https://www.physicsforums.com/threads/are-3d-printers-easy-to-use-yet.917489/ but none that address the overall topic (unless I've missed...
Back
Top